The problem of testing two simple hypotheses in a general probability space is considered. For a fixed type-I error probability, the best exponential decay rate of the type-II error probability is investigated. In regular asymptotic cases (i.e., when the length of the observation interval grows without limit) the best decay rate is given by Stein's exponent. In the paper, for a general probability space, some non-asymptotic lower and upper bounds for the best rate are derived. These bounds represent pure analytic relations without any limiting operations. In some natural cases, these bounds also give the convergence rate for Stein's exponent. Some illustrating examples are also provided.
翻译:在一般概率范围内测试两个简单假设的问题得到了考虑。 对于固定的I型误差概率,将调查第二型误差概率中的最佳指数衰减率。在常规的无药可依的情况下(即观察间隔的长度没有限制地延长),Stein的推手给出了最佳衰变率。在论文中,为了一般概率空间,可以得出一些非无药可依的下限和上限的最佳率。这些界限代表纯粹的分析关系,没有任何限制操作。在一些自然情况下,这些界限还给出了Stein的引号的趋同率。还提供了一些说明性的例子。</s>