Data imputation is a prevalent and important task due to the ubiquitousness of missing data. Many efforts try to first draft a completed data and second refine to derive the imputation results, or "draft-then-refine" for short. In this work, we analyze this widespread practice from the perspective of Dirichlet energy. We find that a rudimentary "draft" imputation will decrease the Dirichlet energy, thus an energy-maintenance "refine" step is in need to recover the overall energy. Since existing "refine" methods such as Graph Convolutional Network (GCN) tend to cause further energy decline, in this work, we propose a novel framework called Graph Laplacian Pyramid Network (GLPN) to preserve Dirichlet energy and improve imputation performance. GLPN consists of a U-shaped autoencoder and residual networks to capture global and local detailed information respectively. By extensive experiments on several real-world datasets, GLPN shows superior performance over state-of-the-art methods under three different missing mechanisms. Our source code is available at https://github.com/liguanlue/GLPN.


翻译:数据插补是一项广泛而重要的任务,因为缺失数据无处不在。许多尝试首先起草完整的数据,然后再进行细化以得出插补结果,或简称为“起草-细化”。在这项工作中,我们从Dirichlet能量的角度分析这种广泛的实践。 我们发现,一个基本的“起草”插补将减少Dirichlet能量,因此需要一步能量维护的“细化”步骤来恢复整体能量。 由于现有的“细化”方法如图形卷积网络(GCN)倾向于导致进一步的能量下降,在这项工作中,我们提出了一种新颖的框架,称为图拉普拉斯金字塔网络(GLPN),以保留Dirichlet能量并提高插补性能。 GLPN由一个U形自编码器和残差网络组成,以捕捉全局和局部详细信息。通过对几个真实世界数据集的广泛实验,GLPN在三种不同的缺失机制下显示出优越的性能。我们的源代码可在https://github.com/liguanlue/GLPN上找到。

0
下载
关闭预览

相关内容

在统计调查的过程中,由于受访者对问题的遗漏、拒绝,或是调查员与调查问卷本身存在的一些疏忽,使得记录经常会出现 缺失数据 (Missing Data) 的问题。但是,几乎所有标准统计方法都假设每个个案具有可用于分析的所有变量信息,因此缺失数据就成为进行统计研究或问卷调查的工作人员所必须解决的一个问题。
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2021年5月25日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员