David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael GómezBombarelli, Timothy Hirzel, Alán Aspuru-Guzik, Ryan P. Adams. Convolutional networks on graphs for learning molecular fingerprints
[https://arxiv.org/pdf/1509.09292.pdf]
Ashesh Jain, Amir R. Zamir, Silvio Savarese, Ashutosh Saxena. Structural-RNN: Deep Learning on Spatio-Temporal Graphs
[https://arxiv.org/abs/1511.05298]
Daniel Oñoro-Rubio, Mathias Niepert, Alberto García-Durán, Roberto González, Roberto J. López-Sastre. Representation learning for visual-relational knowledge graphs
[https://arxiv.org/pdf/1709.02314.pdf]
Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo, Yuji Matsumoto. Knowledge Transfer for Out-of-Knowledge-Base Entities : A Graph Neural Network Approach
[https://arxiv.org/pdf/1706.05674.pdf]
Federico Monti, Michael M. Bronstein, Xavier Bresson. Geometric Matrix Completion with Recurrent Multi-Graph Neural Networks
[https://arxiv.org/abs/1704.06803]
Kenneth Marino, Ruslan Salakhutdinov, Abhinav Gupta. The More You Know: Using Knowledge Graphs for Image Classification
[https://arxiv.org/pdf/1612.04844.pdf]
Damien Teney, Lingqiao Liu, Anton van den Hengel. Graph-Structured Representations for Visual Question Answering
[https://arxiv.org/pdf/1609.05600.pdf]
Diego Marcheggiani, Ivan Titov. Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling
[https://arxiv.org/abs/1703.04826]
Joost Bastings, Ivan Titov, Wilker Aziz, Diego Marcheggiani, Khalil Sima'an. Graph Convolutional Encoders for Syntax-aware Neural Machine Translation
[https://arxiv.org/pdf/1704.04675.pdf]
2018
Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, Richard Zemel. Neural Relational Inference for Interacting Systems
[https://arxiv.org/pdf/1802.04687.pdf]
Marinka Zitnik, Monica Agrawal, Jure Leskovec. Modeling polypharmacy side effects with graph convolutional networks
[https://arxiv.org/abs/1802.00543.pdf]
Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, Max Welling. Modeling Relational Data with Graph Convolutional Networks
[https://arxiv.org/pdf/1703.06103.pdf]
Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, Jure Leskovec. Graph Convolutional Neural Networks for Web-Scale Recommender Systems
[https://arxiv.org/abs/1806.01973.pdf]
Medhini Narasimhan, Svetlana Lazebnik, Alexander Schwing. Out of the Box: Reasoning with Graph Convolution Nets for Factual Visual Question Answering
[https://arxiv.org/abs/1811.00538]
Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, Yichen Wei. Relation Networks for Object Detection
[https://arxiv.org/abs/1711.11575]
Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon. Dynamic Graph CNN for Learning on Point Clouds
[https://arxiv.org/pdf/1801.07829.pdf]
Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
[https://arxiv.org/pdf/1612.00593.pdf]
Zhouxia Wang, Tianshui Chen, Jimmy Ren, Weihao Yu, Hui Cheng, Liang Lin. Deep Reasoning with Knowledge Graph for Social Relationship Understanding
[https://arxiv.org/pdf/1807.00504.pdf]
Diego Marcheggiani, Joost Bastings, Ivan Titov. Exploiting Semantics in Neural Machine Translation with Graph Convolutional Networks
[https://www.aclweb.org/anthology/N18-2078/]
Linfeng Song, Zhiguo Wang, Mo Yu, Yue Zhang, Radu Florian, Daniel Gildea. Exploring Graph-structured Passage Representation for Multi-hop Reading Comprehension with Graph Neural Networks
[https://arxiv.org/abs/1809.02040]
Yuhao Zhang, Peng Qi, Christopher D. Manning. Graph Convolution over Pruned Dependency Trees Improves Relation Extraction
[https://arxiv.org/abs/1809.10185]
Daniel Beck, Gholamreza Haffari, Trevor Cohn. Graph-to-Sequence Learning using Gated Graph Neural Networks
[https://arxiv.org/pdf/1806.09835.pdf]
Afshin Rahimi, Trevor Cohn, Timothy Baldwin. Semi-supervised User Geolocation via Graph Convolutional Networks
[https://arxiv.org/pdf/1804.08049.pdf]
Daniil Sorokin, Iryna Gurevych. Modeling Semantics with Gated Graph Neural Networks for Knowledge Base Question Answering
[https://arxiv.org/pdf/1808.04126.pdf]
2019
Wengong Jin, Kevin Yang, Regina Barzilay, Tommi Jaakkola. Learning Multimodal Graph-to-Graph Translation for Molecular Optimization
[https://openreview.net/pdf?id=B1xJAsA5F7]
Peifeng Wang, Jialong Han, Chenliang Li, Rong Pan. Logic Attention Based Neighborhood Aggregation for Inductive Knowledge Graph Embedding
[https://arxiv.org/pdf/1811.01399.pdf]
Namyong Park, Andrey Kan, Xin Luna Dong, Tong Zhao, Christos Faloutsos. Estimating Node Importance in Knowledge Graphs Using Graph Neural Networks
[https://arxiv.org/pdf/1905.08865.pdf]
Deepak Nathani, Jatin Chauhan, Charu Sharma, Manohar Kaul. Learning Attention-based Embeddings for Relation Prediction in Knowledge Graphs
[https://arxiv.org/pdf/1906.01195.pdf]
Kun Xu, Mo Yu, Yansong Feng, Yan Song, Zhiguo Wang, Dong Yu. Cross-lingual Knowledge Graph Alignment via Graph Matching Neural Network
[https://128.84.21.199/pdf/1905.11605.pdf]
Jiani Zhang, Xingjian Shi, Shenglin Zhao, Irwin King. STAR-GCN: Stacked and Reconstructed Graph Convolutional Networks for Recommender Systems
[https://arxiv.org/pdf/1905.13129.pdf]
Mengshi Qi, Weijian Li, Zhengyuan Yang, Yunhong Wang, Jiebo Luo. Attentive Relational Networks for Mapping Images to Scene Graphs
[https://arxiv.org/pdf/1811.10696.pdf]
Jianchao Wu, Limin Wang, Li Wang, Jie Guo, Gangshan Wu. Learning Actor Relation Graphs for Group Activity Recognition
[https://arxiv.org/pdf/1904.10117.pdf]
Yunpeng Chen, Marcus Rohrbach, Zhicheng Yan, Shuicheng Yan, Jiashi Feng, Yannis Kalantidis. Graph-Based Global Reasoning Networks
[https://arxiv.org/pdf/1811.12814.pdf]
Zhongdao Wang, Liang Zheng, Yali Li, Shengjin Wang. Linkage Based Face Clustering via Graph Convolution Network
[https://arxiv.org/pdf/1903.11306.pdf]
Long Zhao, Xi Peng, Yu Tian, Mubbasir Kapadia, Dimitris N. Metaxas. Semantic Graph Convolutional Networks for 3D Human Pose Regression
[https://arxiv.org/pdf/1904.03345.pdf]
Yichao Yan, Qiang Zhang, Bingbing Ni, Wendong Zhang, Minghao Xu, Xiaokang Yang. Learning Context Graph for Person Search
[https://arxiv.org/pdf/1904.01830.pdf]
Shikhar Vashishth, Manik Bhandari, Prateek Yadav, Piyush Rai, Chiranjib Bhattacharyya, Partha Talukdar Incorporating Syntactic and Semantic Information in Word Embeddings using Graph Convolutional Networks
[https://arxiv.org/pdf/1809.04283.pdf]
Daesik Kim, Seonhoon Kim, Nojun Kwak. Textbook Question Answering with Multi-modal Context Graph Understanding and Self-supervised Open-set Comprehension
[https://arxiv.org/pdf/1811.00232.pdf]
Yunxuan Xiao, Yanru Qu, Lin Qiu, Hao Zhou, Lei Li, Weinan Zhang, Yong Yu. Dynamically Fused Graph Network for Multi-hop Reasoning
[https://arxiv.org/pdf/1905.06933.pdf]
Hao Zhu, Yankai Lin, Zhiyuan Liu, Jie Fu, Tat-seng Chua, Maosong Sun. Graph Neural Networks with Generated Parameters for Relation Extraction
[https://arxiv.org/pdf/1902.00756.pdf]
Ningyu Zhang, Shumin Deng, Zhanlin Sun, Guanying Wang, Xi Chen, Wei Zhang, Huajun Chen. Long-tail Relation Extraction via Knowledge Graph Embeddings and Graph Convolution Networks
[https://arxiv.org/pdf/1903.01306.pdf]
Chun Wang, Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Chengqi Zhang. Attributed Graph Clustering: A Deep Attentional Embedding Approach
[https://arxiv.org/pdf/1906.06532.pdf]
Xiaotong Zhang, Han Liu, Qimai Li, Xiao-Ming Wu. Attributed Graph Clustering via Adaptive Graph Convolution
[https://arxiv.org/pdf/1906.01210.pdf]
Jia Li, Yu Rong, Hong Cheng, Helen Meng, Wenbing Huang, Junzhou Huang. Semi-Supervised Graph Classification: A Hierarchical Graph Perspective
[https://arxiv.org/pdf/1904.05003.pdf]
Hao Wang, Tong Xu, Qi Liu, Defu Lian, Enhong Chen, Dongfang Du, Han Wu, Wen Su. MCNE: An End-to-End Framework for Learning Multiple Conditional Network Representations of Social Network
[https://arxiv.org/pdf/1905.11013.pdf]
Ninghao Liu, Qiaoyu Tan, Yuening Li, Hongxia Yang, Jingren Zhou, Xia Hu. Is a Single Vector Enough? Exploring Node Polysemy for Network Embedding
[https://arxiv.org/pdf/1905.10668.pdf]