In this work, we introduce Gradient Siamese Network (GSN) for image quality assessment. The proposed method is skilled in capturing the gradient features between distorted images and reference images in full-reference image quality assessment(IQA) task. We utilize Central Differential Convolution to obtain both semantic features and detail difference hidden in image pair. Furthermore, spatial attention guides the network to concentrate on regions related to image detail. For the low-level, mid-level and high-level features extracted by the network, we innovatively design a multi-level fusion method to improve the efficiency of feature utilization. In addition to the common mean square error supervision, we further consider the relative distance among batch samples and successfully apply KL divergence loss to the image quality assessment task. We experimented the proposed algorithm GSN on several publicly available datasets and proved its superior performance. Our network won the second place in NTIRE 2022 Perceptual Image Quality Assessment Challenge track 1 Full-Reference.
翻译:在这项工作中,我们引入了用于图像质量评估的梯度 Siamese 网络(GSN) 。 所建议的方法在完全参考图像质量评估(IQA)任务中,能够捕捉扭曲的图像和参考图像之间的梯度特征。 我们利用中央差异变迁获得图像配对中隐藏的语义特征和细节差异。 此外, 空间关注引导网络集中关注与图像细节有关的区域。 对于由网络提取的低级别、中级和高级别特征, 我们创新地设计了一种多级聚合方法,以提高地物利用效率。 除了常见的平均平方误差监督外, 我们还进一步考虑批量样本之间的相对距离,并成功地将 KL差异损失应用到图像质量评估任务中。 我们用几个公开可用的数据集实验了拟议的GSN 算法, 并证明了其优异性表现。 我们的网络在NTIRE 2022 Perbeual图像质量评估挑战轨道1全参考中赢得了第二位。