项目名称: 基于卫星遥感的区域高分辨率氮氧化物排放量反演模型研究

项目编号: No.41501476

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 天文学、地球科学

项目作者: 余超

作者单位: 中国科学院遥感与数字地球研究所

项目金额: 20万元

中文摘要: 氮氧化物NOx对区域大气复合污染具有重要贡献,是大气污染物排放清单调查的重要内容。自下而上排放清单具有较大不确定性,卫星遥感技术可以对其进行校验和改善。然而受限于卫星数据源、污染物网格传输及反演计算复杂度等问题,现有排放量卫星反演模型不能适用于区域高分辨率网格空间。本项目将改善卫星NO2柱浓度反演精度,简化排放-浓度非线性关系模型,实现NOx排放量快速估算,满足区域高分辨率NOx排放清单校验优化和动态更新的应用需求。研究内容包括:(1)针对NO2业务化产品在区域尺度应用的缺陷,开展中国地区高分辨率卫星NO2柱浓度数据反演;(2)分析污染物水平传输与化学转化过程,建立耦合化学过程的NOx水平传输模型;(3)研究排放模型及观测模型误差传递特征,利用卡尔曼滤波算法实现排放量最优化估计。本项目有望为区域NOx排放量监控及减排评估提供新的技术手段,为我国完成NOx排放总量控制目标提供科学支持。

中文关键词: 大气污染;霾;紫外遥感;大气化学成分;排放清单

英文摘要: Nitrogen oxides (NOx≡NO+NO2) play an important role in the formation of the air pollution complex and gray haze, and they are major chemical species of air pollutant emission inventories. Bottom-up inventories of NOx emissions, based on limited knowledge of emission factors and exrapolation, are subject to substantial uncertainties, top-down information derived from space-based observations of NO2 columns can reduce significantly the uncertainties in NOx emissions. However, current inverse modelling of NOx emissions can't performe well on the high resolution grids, because of the uncertainties related to satellite retrieval of NO2 columns, the neglection of horizontal transport between grids, and the complexity of the inverse problems. We will improve the retrieval of NO2 columns, which are the basis of an inversion of NOx emissions, and foucus on exploring the coupling between horizontal transportation and chemical process of NOx, therefore, simplify the complex non-linear relationship between NOx emissions and NO2 observations, in order to avoid time-consuming inversion and update the NOx emissions timely. The main research contents include the following: (1)Performing the China high-resolution retrieval of NO2 vertical column density from OMI so as to reduces the uncertainties related to operational standard NO2 column retrievals; (2)Establishing the non-linear relationship between NOx emissions and NO2 observations, which is performed through the construction of an horizontal transport model coupled with chemical process of NOx; (3)Implementing the optimization inversion of NOx emissions based on Kalman filter algorithm. This study is expected to provide a new technique for NOx emissions monitoring and reduction evaluation on a mesoscopic scale. We believe this work is also likely to provide scientific supports for achieving China's control target for NOx emissions.

英文关键词: Air Pollution;Haze;Ultraviolet Remote Sensing;Atmospheric Chemical Composition;Emissions Inventory

成为VIP会员查看完整内容
0

相关内容

顾及时空特征的地理知识图谱构建方法
专知会员服务
53+阅读 · 2022年2月15日
【博士论文】基于深度学习的单目场景深度估计方法研究
专知会员服务
52+阅读 · 2021年10月1日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
64+阅读 · 2021年5月3日
大数据安全技术研究进展
专知会员服务
93+阅读 · 2020年5月2日
如何利用深度学习优化大气污染物排放量估算?
微软研究院AI头条
0+阅读 · 2021年8月31日
综述:基于GAN的图像翻译模型盘点
PaperWeekly
13+阅读 · 2019年9月2日
【泡泡点云时空-PCL源码解读】ICP点云精配准算法
泡泡机器人SLAM
179+阅读 · 2019年5月22日
【大数据】海量数据分析能力形成和大数据关键技术
产业智能官
17+阅读 · 2018年10月29日
AI如何帮助卫星遥感释放价值?
未来论坛
19+阅读 · 2018年8月8日
好文 | 基于深度学习的目标检测技术演进
七月在线实验室
12+阅读 · 2018年1月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月16日
ResT V2: Simpler, Faster and Stronger
Arxiv
0+阅读 · 2022年4月15日
Arxiv
12+阅读 · 2019年4月9日
小贴士
相关主题
相关资讯
如何利用深度学习优化大气污染物排放量估算?
微软研究院AI头条
0+阅读 · 2021年8月31日
综述:基于GAN的图像翻译模型盘点
PaperWeekly
13+阅读 · 2019年9月2日
【泡泡点云时空-PCL源码解读】ICP点云精配准算法
泡泡机器人SLAM
179+阅读 · 2019年5月22日
【大数据】海量数据分析能力形成和大数据关键技术
产业智能官
17+阅读 · 2018年10月29日
AI如何帮助卫星遥感释放价值?
未来论坛
19+阅读 · 2018年8月8日
好文 | 基于深度学习的目标检测技术演进
七月在线实验室
12+阅读 · 2018年1月31日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员