Conditional generation of time-dependent data is a task that has much interest, whether for data augmentation, scenario simulation, completing missing data, or other purposes. Recent works proposed a Transformer-based Time series generative adversarial network (TTS-GAN) to address the limitations of recurrent neural networks. However, this model assumes a unimodal distribution and tries to generate samples around the expectation of the real data distribution. One of its limitations is that it may generate a random multivariate time series; it may fail to generate samples in the presence of multiple sub-components within an overall distribution. One could train models to fit each sub-component separately to overcome this limitation. Our work extends the TTS-GAN by conditioning its generated output on a particular encoded context allowing the use of one model to fit a mixture distribution with multiple sub-components. Technically, it is a conditional generative adversarial network that models realistic multivariate time series under different types of conditions, such as categorical variables or multivariate time series. We evaluate our model on UniMiB Dataset, which contains acceleration data following the XYZ axes of human activities collected using Smartphones. We use qualitative evaluations and quantitative metrics such as Principal Component Analysis (PCA), and we introduce a modified version of the Frechet inception distance (FID) to measure the performance of our model and the statistical similarities between the generated and the real data distributions. We show that this transformer-based CGAN can generate realistic high-dimensional and long data sequences under different kinds of conditions.


翻译:有条件生成基于时间的数据是一项非常有意义的任务,无论是数据增强、假想模拟、完成缺失的数据,还是其他目的。最近的工作提议了一个基于变异器的时间序列基因对抗网络(TTS-GAN),以解决反复出现的神经网络的局限性。然而,这一模型假设一个单方式的分布,并试图围绕真实数据分布的预期生成样本。它的局限性之一是它可能产生随机的多变时间序列;它可能无法在总分布中存在多个子组件的情况下生成样本。可以对每个子组件分别匹配模型,以克服这一限制。我们的工作将TTS-GAN扩展为TTS-TS-GAN,在特定的编码背景下调整其生成的输出,允许使用一个模型来匹配混合分布的多个子组件。技术上,这是一个有条件的基因对抗网络,在不同的模式下,例如基于绝对变量或多变异时间序列,模型可能无法生成出样本。我们在UnimiB数据设置模型上,包含根据 XYZ 轴生成的长序序列数据,从而生成长期数据流流流数据,我们用智能的定量分析模型和定量分析模型,我们所收集的定量数据。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【NUS-Xavier教授】生成模型VAE与GAN,69页ppt
专知会员服务
73+阅读 · 2022年4月6日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员