In this paper we propose the SC-Reg (self-concordant regularization) framework for learning overparameterized feedforward neural networks by incorporating second-order information in the \emph{Newton decrement} framework for convex problems. We propose the generalized Gauss-Newton with Self-Concordant Regularization (SCoRe-GGN) algorithm that updates the network parameters each time it receives a new input batch. The proposed algorithm exploits the structure of the second-order information in the Hessian matrix, thereby reducing the training computational overhead. Although our current analysis considers only the convex case, numerical experiments show the efficiency of our method and its fast convergence under both convex and non-convex settings, which compare favorably against baseline first-order methods and a quasi-Newton method.


翻译:在本文中,我们建议采用SC-Reg(自我调节规范)框架,通过将二阶信息纳入 convex 问题\ emph{ Newton decrement} 框架中,学习过度参数化的进化神经网络。我们建议采用通用的Gaus-Newton与自我调节规范(Score-GGN)算法,每次收到新的输入批次时都更新网络参数。提议的算法利用了赫森矩阵中第二阶信息的结构,从而减少了培训的计算间接费用。虽然我们目前的分析只考虑了 convex 案例,但数字实验表明我们的方法效率及其在 convex 和非 convex 设置下快速趋同,这与基线第一阶方法和准纽顿方法相比是有利的。

0
下载
关闭预览

相关内容

【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
Arxiv
0+阅读 · 2022年2月15日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
19+阅读 · 2018年6月27日
VIP会员
相关VIP内容
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
Top
微信扫码咨询专知VIP会员