Distributed methods for training models on graph datasets have recently grown in popularity, due to the size of graph datasets as well as the private nature of graphical data like social networks. However, the graphical structure of this data means that it cannot be disjointly partitioned between different learning clients, leading to either significant communication overhead between clients or a loss of information available to the training method. We introduce Federated Graph Convolutional Network (FedGCN), which uses federated learning to train GCN models with optimized convergence rate and communication cost. Compared to prior methods that require communication among clients at each iteration, FedGCN preserves the privacy of client data and only needs communication at the initial step, which greatly reduces communication cost and speeds up the convergence rate. We theoretically analyze the tradeoff between FedGCN's convergence rate and communication cost under different data distributions, introducing a general framework can be generally used for the analysis of all edge-completion-based GCN training algorithms. Experimental results demonstrate the effectiveness of our algorithm and validate our theoretical analysis.


翻译:由于图表数据集的规模以及社交网络等图形数据的私人性质,图表数据集培训模型的分布方法最近越来越受欢迎。然而,这些数据的图形结构意味着它不能分散在不同学习客户之间,从而导致客户之间的大量通信间接费用或培训方法所能获得的信息丢失。我们引入了Freederal Place Convolutional Network(FedGCN),它利用联合学习对GCN模型进行优化趋同率和通信成本的培训。与需要客户在每次循环中进行沟通的先前方法相比,FedGCN保存客户数据的隐私,只需在初始阶段进行沟通,从而大大降低通信成本,加快聚合速度。我们从理论上分析了FedGCN在不同数据分配下合并率和通信成本之间的权衡,引入一个一般用于分析所有边缘完成GCN培训算法的一般框架。实验结果表明我们的算法的有效性,并验证我们的理论分析。

0
下载
关闭预览

相关内容

【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
125+阅读 · 2021年6月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
KDD2021 | 最新GNN官方教程
机器学习与推荐算法
2+阅读 · 2021年8月18日
论文小综 | Attention in Graph Neural Networks
图与推荐
2+阅读 · 2021年5月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Communication Bounds for Convolutional Neural Networks
Arxiv
19+阅读 · 2020年7月13日
VIP会员
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
KDD2021 | 最新GNN官方教程
机器学习与推荐算法
2+阅读 · 2021年8月18日
论文小综 | Attention in Graph Neural Networks
图与推荐
2+阅读 · 2021年5月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员