This paper presents a new annotation method called Sparse Annotation (SA) for crowd counting, which reduces human labeling efforts by sparsely labeling individuals in an image. We argue that sparse labeling can reduce the redundancy of full annotation and capture more diverse information from distant individuals that is not fully captured by Partial Annotation methods. Besides, we propose a point-based Progressive Point Matching network (PPM) to better explore the crowd from the whole image with sparse annotation, which includes a Proposal Matching Network (PMN) and a Performance Restoration Network (PRN). The PMN generates pseudo-point samples using a basic point classifier, while the PRN refines the point classifier with the pseudo points to maximize performance. Our experimental results show that PPM outperforms previous semi-supervised crowd counting methods with the same amount of annotation by a large margin and achieves competitive performance with state-of-the-art fully-supervised methods.


翻译:本文提出了一种名为稀疏标注(SA)的新型标注方法,用于人群计数,通过在图像中对个体进行稀疏标注来减少人类标注工作量。我们认为稀疏标注可以减少完全注释的冗余,并捕获远处个体的更多多样化信息,而这些信息不完全被部分标注方法捕获。此外,我们提出了一种基于点的逐步点匹配网络(PPM),用于更好地利用稀疏标注从整个图像中探索人群,其中包括建议匹配网络(PMN)和性能恢复网络(PRN)。 PMN使用基本点分类器生成伪点样本,而PRN使用伪点对点分类器进行精细调整,以最大化性能。我们的实验结果表明,PPM比以前的同等标注量的半监督人群计数方法表现更好,并且与最先进的完全监督方法实现了竞争性能。

0
下载
关闭预览

相关内容

机器学习损失函数概述,Loss Functions in Machine Learning
专知会员服务
82+阅读 · 2022年3月19日
【CVPR2022】弱监督目标定位建模为领域适应
专知会员服务
15+阅读 · 2022年3月4日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员