Approximate Computing (AxC) techniques trade off the computation accuracy for performance, energy, and area reduction gains. The trade-off is particularly convenient when the applications are intrinsically tolerant to some accuracy loss, as in the Spiking Neural Networks (SNNs) case. SNNs are a practical choice when the target hardware reaches the edge of computing, but this requires some area minimization strategies. In this work, we employ an Interval Arithmetic (IA) model to develop an exploration methodology that takes advantage of the capability of such a model to propagate the approximation error to detect when the approximation exceeds tolerable limits by the application. Experimental results confirm the capability of reducing the exploration time significantly, providing the chance to reduce the network parameters' size further and with more fine-grained results.
翻译:近似计算技术(AxC)对计算性能、能量和减少面积收益的精确度进行交换。当应用软件对某种精确度损失具有内在的容忍度时,这种权衡特别方便,如Spiking神经网络(SNNS)案。当目标硬件到达计算边缘时,SNN是一种实际选择,但这需要某种领域最小化战略。在这项工作中,我们采用Interval 农业研究所(IA)模型来开发一种探索方法,利用这种模型的能力来传播近似误差,以便在近似值超过应用所能承受的限度时进行探测。实验结果证实能够大量缩短勘探时间,从而有机会进一步缩小网络参数的大小,并取得更精细的成果。