As the need for efficient digital circuits is ever growing in the industry, the design of such systems remains daunting, requiring both expertise and time. In an attempt to close the gap between software development and hardware design, powerful features such as functional and object-oriented programming have been used to define new languages, known as Hardware Construction Languages. In this article, we investigate the usage of such languages - more precisely, of Chisel - in the context of Design Space Exploration, and propose a novel design methodology to build custom and adaptable design flows. We apply a functional approach to define flexible strategies for design space exploration, based on combinations of basic exploration steps, and provide a proof-of-concept framework along with a library of basic strategies. We demonstrate our methodology through several use cases, illustrating how various metrics of interest can be considered to build exploration processes - in particular, we provide a quality of service-driven exploration example. The methodology presented in this work makes use of designers' expertise to reduce the time required for hardware design, in particular for Design Space Exploration, and its application should ease digital design and enhance hardware developpers' productivity.


翻译:由于工业对高效数字电路的需求日益增长,这些系统的设计仍然十分艰巨,既需要专门知识,也需要时间。为了缩小软件开发和硬件设计之间的差距,我们利用功能性和面向目标的编程等强有力的特征来定义新语言,称为硬件建设语言。在本条中,我们调查了在设计空间探索背景下使用这类语言的情况,更准确地说,是Chisel的希塞尔语,并提出了建立定制和适应性设计流的新设计方法。我们采用一种实用的方法,根据基本探索步骤的组合,为设计空间探索制定灵活的战略,并提供验证概念框架和基本战略图书馆。我们通过几个使用案例展示了我们的方法,说明如何考虑各种感兴趣的标准来建立勘探进程,特别是我们提供了一种服务驱动探索的质量范例。在这项工作中提出的方法利用设计师的专门知识来缩短硬件设计,特别是设计空间探索所需的时间,其应用应便利数字设计和提高硬件开发商的生产力。</s>

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
38+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
162+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
101+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
11+阅读 · 2022年9月1日
An Overview on Machine Translation Evaluation
Arxiv
14+阅读 · 2022年2月22日
A Survey on Data Augmentation for Text Classification
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
38+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
162+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
101+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员