3D point cloud semantic classification is an important task in robotics as it enables a better understanding of the mapped environment. This work proposes to learn the long-term stability of the 3D objects using a neural network based on PointNet++, where the long-term stable object refers to a static object that cannot move on its own (e.g. tree, pole, building). The training data is generated in an unsupervised manner by assigning a continuous label to individual points by exploiting multiple time slices of the same environment. Instead of using discrete labels, i.e. static/dynamic, we propose to use a continuous label value indicating point temporal stability to train a regression PointNet++ network. We evaluated our approach on point cloud data of two parking lots from the NCLT dataset. The experiments' performance reveals that static vs dynamic object classification is best performed by training a regression model, followed by thresholding, compared to directly training a classification model.
翻译:3D点云文语义分类是机器人的一个重要任务, 因为它有助于更好地了解所绘制的环境。 这项工作提议使用基于 PointNet++ 的神经网络来学习三维对象的长期稳定性。 长期稳定对象指的是一个无法自行移动的静态对象( 如树、 杆、 建筑)。 培训数据是以一种不受监督的方式生成的, 方法是利用同一环境的多时段切片为各个点指定一个连续标签。 我们提议使用一个连续标签值来显示点时间稳定性, 以训练一个回归点 点 Net++ 网络。 我们从 NCCLT 数据集中评估了我们关于两个停车场点云数据的方法。 实验的性能显示, 静态和动态对象分类最好通过训练回归模型来进行, 之后是门槛, 与直接训练分类模型相比, 。