Object placement is a crucial task for robots in unstructured environments as it enables them to manipulate and arrange objects safely and efficiently. However, existing methods for object placement have limitations, such as the requirement for a complete 3D model of the object or the inability to handle complex object shapes, which restrict the applicability of robots in unstructured scenarios. In this paper, we propose an Unseen Object Placement (UOP) method that directly detects stable planes of unseen objects from a single-view and partial point cloud. We trained our model on large-scale simulation data to generalize over relationships between the shape and properties of stable planes with a 3D point cloud. We verify our approach through simulation and real-world robot experiments, demonstrating state-of-the-art performance for placing single-view and partial objects. Our UOP approach enables robots to place objects stably, even when the object's shape and properties are not fully known, providing a promising solution for object placement in unstructured environments. Our research has potential applications in various domains such as manufacturing, logistics, and home automation. Additional results can be viewed on https://sites.google.com/uop-net, and we will release our code, dataset upon publication.
翻译:对于在非结构化环境中的机器人来说,物体定位是一项关键的任务,因为机器人能够安全、高效地操作和安排物体。然而,现有的物体定位方法具有局限性,例如需要完全的 3D 模型,或者无法处理复杂的物体形状,这限制了机器人在非结构化情景中的可适用性。在本文件中,我们建议了一种不见物体定位方法,直接从单一视图和部分点云中探测到看不见物体稳定的平面。我们训练了大规模模拟数据模型,以概括3D点云稳定平面的形状和特性之间的关系。我们通过模拟和真实世界机器人实验来核查我们的方法,演示放置单一视图和部分对象的先进性能。我们的UOP方法使机器人能够将物体刺穿,即使物体的形状和特性尚未完全为人所知,也为在非结构化环境中放置物体提供了有希望的解决方案。我们的研究有可能在诸如制造、物流和家庭自动化等多个领域应用。我们还可以在https://sites.golegle/ comop-net上查看其他的结果,我们将在https://sitesets. ladealmentalment on.</s>