Micro aerial vehicles are becoming increasingly important in search and rescue operations due to their agility, speed, and ability to access confined spaces or hazardous areas. However, designing lightweight aerial systems presents significant structural, aerodynamic, and computational challenges. This work addresses two key limitations in many low-cost aerial systems under two kilograms: their lack of structural durability during flight through rough terrains and inability to replan paths dynamically when new victims or obstacles are detected. We present a fully customised drone built from scratch using only commonly available components and materials, emphasising modularity, low cost, and ease of assembly. The structural frame is reinforced with lightweight yet durable materials to withstand impact, while the onboard control system is powered entirely by free, open-source software solutions. The proposed system demonstrates real-time perception and adaptive navigation capabilities without relying on expensive hardware accelerators, offering an affordable and practical solution for real-world search and rescue missions.
翻译:暂无翻译