DeepSeek-R1, known for its low training cost and exceptional reasoning capabilities, has achieved state-of-the-art performance on various benchmarks. However, detailed evaluations from the perspective of real-world applications are lacking, making it challenging for users to select the most suitable DeepSeek models for their specific needs. To address this gap, we evaluate the DeepSeek-V3, DeepSeek-R1, DeepSeek-R1-Distill-Qwen series, DeepSeek-R1-Distill-Llama series, and their corresponding 4-bit quantized models on the enhanced A-Eval benchmark, A-Eval-2.0. By comparing original instruction-tuned models with their distilled counterparts, we analyze how reasoning enhancements impact performance across diverse practical tasks. Our results show that reasoning-enhanced models, while generally powerful, do not universally outperform across all tasks, with performance gains varying significantly across tasks and models. To further assist users in model selection, we quantify the capability boundary of DeepSeek models through performance tier classifications and intuitive line charts. Specific examples provide actionable insights to help users select and deploy the most cost-effective DeepSeek models, ensuring optimal performance and resource efficiency in real-world applications. It should be noted that, despite our efforts to establish a comprehensive, objective, and authoritative evaluation benchmark, the selection of test samples, characteristics of data distribution, and the setting of evaluation criteria may inevitably introduce certain biases into the evaluation results. We will continuously optimize the evaluation benchmarks and periodically update this paper to provide more comprehensive and accurate evaluation results. Please refer to the latest version of the paper for the most recent results and conclusions.
翻译:暂无翻译