We investigate pairs of permutations $F,G$ of $\mathbb{F}_{p^n}$ such that $F(x+a)-G(x)$ is a permutation for every $a\in\mathbb{F}_{p^n}$. We show that necessarily $G(x) = \wp(F(x))$ for some complete mapping $-\wp$ of $\mathbb{F}_{p^n}$, and call the permutation $F$ a perfect $\wp$ nonlinear (P$\wp$N) function. If $\wp(x) = cx$, then $F$ is a PcN function, which have been considered in the literature, lately. With a binary operation on $\mathbb{F}_{p^n}\times\mathbb{F}_{p^n}$ involving $\wp$, we obtain a quasigroup, and show that the graph of a P$\wp$N function $F$ is a difference set in the respective quasigroup. We further point to variants of symmetric designs obtained from such quasigroup difference sets. Finally, we analyze an equivalence (naturally defined via the automorphism group of the respective quasigroup) for P$\wp$N functions, respectively, the difference sets in the corresponding quasigroup.
翻译:我们调查了一对美元,G$$F,G$$$f,G$$$$g$$fmathbb{F ⁇ p ⁇ n}的配方,因此,F(x+a)-G(x)$是每美元(mathbb{F}F ⁇ p}美元)的配方。我们显示,对于某些完整的映射,美元(x)=\wp(F,G$)美元($mathbb{F ⁇ F ⁇ p}美元)的配方,那么,美元(x+a)-G(x)美元是每美元(x)=cx$的配方。如果$wp(x)=cx$,那么美元是PN函数。最近文献中已经考虑到的。如果对美元(xx)=g)=wp(xx)=\wpp($F ⁇ p}n}$美元,我们得到了一个准组,并显示,我们从一个P$(wn)对应$($($)的对应值)的函数的配价(美元)的对准组的组合的正正等等等值组的组合,那么的组合的组合的组合的组合的基值差异是确定的。