Explaining algorithmic decisions and recommending actionable feedback is increasingly important for machine learning applications. Recently, significant efforts have been invested in finding a diverse set of recourses to cover the wide spectrum of users' preferences. However, existing works often neglect the requirement that the recourses should be close to the data manifold; hence, the constructed recourses might be implausible and unsatisfying to users. To address these issues, we propose a novel approach that explicitly directs the diverse set of actionable recourses towards the data manifold. We first find a diverse set of prototypes in the favorable class that balances the trade-off between diversity and proximity. We demonstrate two specific methods to find these prototypes: either by finding the maximum a posteriori estimate of a determinantal point process or by solving a quadratic binary program. To ensure the actionability constraints, we construct an actionability graph in which the nodes represent the training samples and the edges indicate the feasible action between two instances. We then find a feasible path to each prototype, and this path demonstrates the feasible actions for each recourse in the plan. The experimental results show that our method produces a set of recourses that are close to the data manifold while delivering a better cost-diversity trade-off than existing approaches.


翻译:解释算法决定和提出可采取行动的反馈对于机器学习应用越来越重要。最近,已经投入大量努力,寻找一套多种多样的求助手段,以涵盖用户的偏好。然而,现有的工作往往忽视了追索方法应当接近数据方的要求;因此,已建的追索方法可能不可信,对用户来说可能不满意。为了解决这些问题,我们建议了一种新颖的方法,明确指导对数据方方面面的一套不同的可采取行动的求助方法。我们首先在有利类别中找到一套不同的原型,以平衡多样性和近距离之间的权衡。我们展示了两种具体的方法来找到这些原型:要么找到对确定点进程的后遗估计,要么解决一个四边两边程序。为了确保可操作性限制,我们用一个可操作性图,将节点代表培训样品和边缘表明两个实例之间的可行行动。我们随后找到一个可行的路径,然后这条路径显示每个原型模式的可行行动方法。我们展示了计划中每一项追索的可行行动。我们实验结果显示两种具体的方法:要么是找到一种比现有数据更接近成本的多样化的方法。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员