The domatic number of a graph is the maximum number of vertex disjoint dominating sets that partition the vertex set of the graph. In this paper we consider the fractional variant of this notion. Graphs with fractional domatic number 1 are exactly the graphs that contain an isolated vertex. Furthermore, it is known that all other graphs have fractional domatic number at least 2. In this note we characterize graphs with fractional domatic number 2. More specifically, we show that a graph without isolated vertices has fractional domatic number 2 if and only if it has a vertex of degree 1 or a connected component isomorphic to a 4-cycle. We conjecture that if the fractional domatic number is more than 2, then it is at least 7/3.
翻译:图形的 domatic 数字是一个图形的顶点脱钩占位数的最大数。 在本文中, 我们考虑这个概念的分数变量。 带有分数度数 1 的图形就是包含一个孤立的顶点的图形。 此外, 已知所有其他图形的分数值至少为 2 。 在本注释中, 我们用分数度数2 来描述带有分数度数的图形。 更具体地说, 我们显示, 没有孤立的顶点的图形有分数值 2, 如果且只有它具有1 度的顶点或一个连接的组件对4 周期是形态的, 我们的预测是, 如果分数数数超过 2, 那么至少就是 7/3 。