The remarkable successes of neural networks in a huge variety of inverse problems have fueled their adoption in disciplines ranging from medical imaging to seismic analysis over the past decade. However, the high dimensionality of such inverse problems has simultaneously left current theory, which predicts that networks should scale exponentially in the dimension of the problem, unable to explain why the seemingly small networks used in these settings work as well as they do in practice. To reduce this gap between theory and practice, we provide a general method for bounding the complexity required for a neural network to approximate a H\"older (or uniformly) continuous function defined on a high-dimensional set with a low-complexity structure. The approach is based on the observation that the existence of a Johnson-Lindenstrauss embedding $A\in\mathbb{R}^{d\times D}$ of a given high-dimensional set $S\subset\mathbb{R}^D$ into a low dimensional cube $[-M,M]^d$ implies that for any H\"older (or uniformly) continuous function $f:S\to\mathbb{R}^p$, there exists a H\"older (or uniformly) continuous function $g:[-M,M]^d\to\mathbb{R}^p$ such that $g(Ax)=f(x)$ for all $x\in S$. Hence, if one has a neural network which approximates $g:[-M,M]^d\to\mathbb{R}^p$, then a layer can be added that implements the JL embedding $A$ to obtain a neural network that approximates $f:S\to\mathbb{R}^p$. By pairing JL embedding results along with results on approximation of H\"older (or uniformly) continuous functions by neural networks, one then obtains results which bound the complexity required for a neural network to approximate H\"older (or uniformly) continuous functions on high dimensional sets. The end result is a general theoretical framework which can then be used to better explain the observed empirical successes of smaller networks in a wider variety of inverse problems than current theory allows.


翻译:在过去十年里,神经网络在从医学成像到地震分析等不同学科中取得了显著的成功。然而,这种反向问题的高度多维性同时留下了当前理论,该理论预测,网络在问题所涉层面的规模应该指数化,无法解释为什么在这些设置中使用的看起来小的网络在理论和实践上起作用。为了缩小理论和实践之间的这一差距,我们提供了一个一般方法,将神经网络所需的复杂性绑到大约H\'older(或统一)持续功能,该功能在高维值的基值上定义一个H\'older(或统一)持续函数,该高维值结构。A\\\\\\\\\\\\\\\\\\\\\\时间,该方法基于观察,一个强度网络的存在 $S\sub\a\ ma\\\\\\\ dtime}一个给定的高维值设置 $(subbbbbbbb{D$),该功能可以持续运行的H\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ dy y ma\ dy y al a a lax a maxxxx a 直函数。</s>

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
48+阅读 · 2022年2月19日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
37+阅读 · 2021年2月10日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员