In this paper, we provide near-optimal accelerated first-order methods for minimizing a broad class of smooth nonconvex functions that are strictly unimodal on all lines through a minimizer. This function class, which we call the class of smooth quasar-convex functions, is parameterized by a constant $\gamma \in (0,1]$, where $\gamma = 1$ encompasses the classes of smooth convex and star-convex functions, and smaller values of $\gamma$ indicate that the function can be "more nonconvex." We develop a variant of accelerated gradient descent that computes an $\epsilon$-approximate minimizer of a smooth $\gamma$-quasar-convex function with at most $O(\gamma^{-1} \epsilon^{-1/2} \log(\gamma^{-1} \epsilon^{-1}))$ total function and gradient evaluations. We also derive a lower bound of $\Omega(\gamma^{-1} \epsilon^{-1/2})$ on the worst-case number of gradient evaluations required by any deterministic first-order method, showing that, up to a logarithmic factor, no deterministic first-order method can improve upon ours.
翻译:在本文中, 我们提供接近最佳的加速一阶方法, 以通过最小化器将所有线条上所有线条上完全单式的光滑非convex函数的宽度降为最小值。 这个函数类, 我们称之为平滑类象子- convex 函数的等级, 以恒定 $\gamma = 1 = 美元为参数, 其中$= 1 = 平滑 convex 函数的等级, $\ gamma = 1 = 1 = 和 star- convex 函数的等级, 和小值 $\ gamma = 1 = 表示该函数可以是“ 更多的非convex ” 。 我们还开发了一个加速梯度下限变量, 计算一个平滑的 $\ epslon$- 近似最小值最小值 。 这个函数类, 我们称之为平滑的 $\ gusalon- pas- convex 函数, = a stestasim ass nu assion a deviquest rup deviquest rodestrations a rup extiquest legrost leglegy ex a lest a ex a ex a ex ex a ex ex ex a ex left ex a legn a ex a ex a rost legleglegleglegleglegment a ex a ex a rup a rost rost rup a ex a rup rup rup rup a ex a ex rost rost rost a r) rost rost rup rup rups a rup a ro rup a rup a rup a rup a rup rup</s>