Meta-learning methods aim to build learning algorithms capable of quickly adapting to new tasks in low-data regime. One of the main benchmarks of such an algorithms is a few-shot learning problem. In this paper we investigate the modification of standard meta-learning pipeline that takes a multi-task approach during training. The proposed method simultaneously utilizes information from several meta-training tasks in a common loss function. The impact of each of these tasks in the loss function is controlled by the corresponding weight. Proper optimization of these weights can have a big influence on training of the entire model and might improve the quality on test time tasks. In this work we propose and investigate the use of methods from the family of simultaneous perturbation stochastic approximation (SPSA) approaches for meta-train tasks weights optimization. We have also compared the proposed algorithms with gradient-based methods and found that stochastic approximation demonstrates the largest quality boost in test time. Proposed multi-task modification can be applied to almost all methods that use meta-learning pipeline. In this paper we study applications of this modification on Prototypical Networks and Model-Agnostic Meta-Learning algorithms on CIFAR-FS, FC100, tieredImageNet and miniImageNet few-shot learning benchmarks. During these experiments, multi-task modification has demonstrated improvement over original methods. The proposed SPSA-Tracking algorithm shows the largest accuracy boost that is competitive against the state-of-the-art meta-learning methods. Our code is available online.


翻译:元学习方法旨在建立能够迅速适应低数据制度中新任务的学习算法。这种算法的主要基准之一是一个微小的学习问题。在本文件中,我们调查了在培训期间采用多任务方法的标准化元学习管道的修改情况。拟议方法同时在共同损失函数中利用若干元培训任务的信息。这些任务在损失函数中的影响由相应的份量来控制。这些重量的适当优化可以对整个模型的培训产生很大影响,并可能提高测试时间任务的质量。在这项工作中,我们提议并调查了从同时周期性透析近似(SPSA)方法的组合中采用的方法,以优化元任务加权法。我们还将拟议的算法与基于梯度的方法进行比较,发现在测试时间里,这些偏差近近于质量的提升。拟议的多任务修正可以适用于几乎所有使用元学习管道的方法。在本文中,我们研究了对Protocrical 网络和模型-Agnal-A) 精确度近似近似近似近似方法的使用方法。在模型-Mexisal-al-al-al-algal-al-alalal-al-al-altraction-al-al-assal-assal-al-assal-al-assal-assalinging the the theslational-I.

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Few Shot Learning with Simplex
Arxiv
5+阅读 · 2018年7月27日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年10月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
相关论文
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Few Shot Learning with Simplex
Arxiv
5+阅读 · 2018年7月27日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
19+阅读 · 2018年3月28日
Top
微信扫码咨询专知VIP会员