Graph Neural Networks (GNNs) have become the state-of-the-art method for many applications on graph structured data. GNNs are a framework for graph representation learning, where a model learns to generate low dimensional node embeddings that encapsulate structural and feature-related information. GNNs are usually trained in an end-to-end fashion, leading to highly specialized node embeddings. While this approach achieves great results in the single-task setting, generating node embeddings that can be used to perform multiple tasks (with performance comparable to single-task models) is still an open problem. We propose a novel training strategy for graph representation learning, based on meta-learning, which allows the training of a GNN model capable of producing multi-task node embeddings. Our method avoids the difficulties arising when learning to perform multiple tasks concurrently by, instead, learning to quickly (i.e. with a few steps of gradient descent) adapt to multiple tasks singularly. We show that the embeddings produced by a model trained with our method can be used to perform multiple tasks with comparable or, surprisingly, even higher performance than both single-task and multi-task end-to-end models.


翻译:神经网图( GNN) 已经成为图形结构化数据中许多应用的最先进方法。 GNN是一个图形代表学习的框架, 模型可以学习生成包含结构和与特征有关信息的低维节点嵌入。 GNN通常会以端到端方式接受培训, 导致高度专业化的节点嵌入。 虽然这种方法在单任务设置中取得了巨大成果, 生成可用于执行多项任务( 与单任务模型相比的性能) 的节点嵌入仍然是一个尚未解决的问题 。 我们提议了一个基于元学习的图形代表学习新颖培训战略, 用于进行图形代表学习, 从而能够对能够生成多功能和多功能节点嵌入的GNN模式进行培训。 我们的方法避免了在学习同时执行多项任务时出现的困难, 而不是通过学习快速适应( 梯度下降的几步) 来适应多项任务。 我们显示, 由我们所培训的模型生成的嵌入模块, 能够用来执行多个任务, 具有可比的或令人吃惊的、 甚至更高性能比单一任务同时执行的多功能的多功能。 我们的方法可以用来执行多种任务。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
47+阅读 · 2020年1月23日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
19+阅读 · 2018年3月28日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Arxiv
0+阅读 · 2022年4月18日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
19+阅读 · 2018年3月28日
Arxiv
10+阅读 · 2017年7月4日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员