We study subtrajectory clustering under the Fr\'echet distance. Given a polygonal curve $P$ with $n$ vertices, and parameters $k$ and $\ell$, the goal is to find $k$ center curves of complexity at most $\ell$ such that every point on $P$ is covered by a subtrajectory that has small Fr\'echet distance to one of the $k$ center curves. We suggest a new approach to solving this problem based on a set cover formulation leading to polynomial-time approximation algorithms. Our solutions rely on carefully designed set system oracles for systems of subtrajectories.
翻译:我们研究的是Fr\'echet 距离下的子词组。 如果多边形曲线($P$,有美元脊椎)和参数($k$和$美元), 目标是找到以美元为单位的复杂中心曲线, 以美元为单位, 这样美元上的每一点都包含在与美元中心曲线之一的较小Fr\'echet距离的子词组中。 我们建议了一种新的方法来解决这个问题, 其依据是一套覆盖配方, 导致多面时近似算法。 我们的解决方案依赖于精心设计的子对象系统设置的系统。