Learning object manipulation is a critical skill for robots to interact with their environment. Even though there has been significant progress in robotic manipulation of rigid objects, interacting with non-rigid objects remains challenging for robots. In this work, we introduce velcro peeling as a representative application for robotic manipulation of non-rigid objects in complex environments. We present a method of learning force-based manipulation from noisy and incomplete sensor inputs in partially observable environments by modeling long term dependencies between measurements with a multi-step deep recurrent network. We present experiments on a real robot to show the necessity of modeling these long term dependencies and validate our approach in simulation and robot experiments. Our results show that using tactile input enables the robot to overcome geometric uncertainties present in the environment with high fidelity in ~90% of all cases, outperforming the baselines by a large margin.
翻译:学习天体操纵是机器人与环境互动的关键技能。 尽管在机器人操纵僵硬天体方面已经取得了显著进展, 但与非硬性天体的互动对于机器人来说仍然具有挑战性。 在这项工作中, 我们引入天鹅绒剥皮作为在复杂环境中机器人操纵非硬性天体的有代表性的应用程序。 我们展示了一种方法,通过模拟与多步骤深度经常性网络的测量数据之间的长期依赖性,在部分可观测环境中从噪音和不完全传感器输入中学习力量操纵。 我们在一个真正的机器人上进行实验,以显示这些长期依赖性模型的必要性,并验证我们在模拟和机器人实验中的做法。 我们的结果显示, 使用触动性输入使机器人能够克服环境中高达90%的地球测量不确定性, 在所有案例中, 90% 的精确度高于基线, 大大超过基线 。