Despite the impressive results achieved by deep learning based 3D reconstruction, the techniques of directly learning to model 4D human captures with detailed geometry have been less studied. This work presents a novel framework that can effectively learn a compact and compositional representation for dynamic human by exploiting the human body prior from the widely used SMPL parametric model. Particularly, our representation, named H4D, represents a dynamic 3D human over a temporal span with the SMPL parameters of shape and initial pose, and latent codes encoding motion and auxiliary information. A simple yet effective linear motion model is proposed to provide a rough and regularized motion estimation, followed by per-frame compensation for pose and geometry details with the residual encoded in the auxiliary code. Technically, we introduce novel GRU-based architectures to facilitate learning and improve the representation capability. Extensive experiments demonstrate our method is not only efficacy in recovering dynamic human with accurate motion and detailed geometry, but also amenable to various 4D human related tasks, including motion retargeting, motion completion and future prediction. Please check out the project page for video and code: https://boyanjiang.github.io/H4D/.
翻译:尽管基于3D的深层次学习重建取得了令人印象深刻的成果,但直接学习以详细几何法模拟4D人类捕捉的技术研究较少,这项工作提供了一个新的框架,能够通过利用广泛使用的 SMPL 参数模型之前的人体,有效学习动态人类的缩缩和组成代表。特别是,我们称为H4D的缩写代表了动态的3D人,其时间跨度与SMPL 形状和初始形状参数以及潜在编码编码编码编码动作和辅助信息相适应。提议了一个简单而有效的线性运动模型,以提供粗略和定期的运动估计,随后以辅助代码中剩余编码的外观和几何方细节的每框架补偿。技术上,我们引入了基于GRU的新结构,以促进学习和提高代表性能力。广泛的实验表明,我们的方法不仅在以精确的动作和详细的几何测量方法恢复动态人类的过程中有效,而且还符合各种与人类有关的任务,包括运动重新定位、运动完成和未来的预测。请查看视频和代码的项目页面: https://boyanjiang.github.H4D/D。