Autonomous driving is an active research topic in both academia and industry. However, most of the existing solutions focus on improving the accuracy by training learnable models with centralized large-scale data. Therefore, these methods do not take into account the user's privacy. In this paper, we present a new approach to learn autonomous driving policy while respecting privacy concerns. We propose a peer-to-peer Deep Federated Learning (DFL) approach to train deep architectures in a fully decentralized manner and remove the need for central orchestration. We design a new Federated Autonomous Driving network (FADNet) that can improve the model stability, ensure convergence, and handle imbalanced data distribution problems while is being trained with federated learning methods. Intensively experimental results on three datasets show that our approach with FADNet and DFL achieves superior accuracy compared with other recent methods. Furthermore, our approach can maintain privacy by not collecting user data to a central server.
翻译:自主驱动是学术界和行业的一个积极研究课题。然而,大多数现有解决方案都侧重于通过以集中型大规模数据培训可学习模型来提高准确性,因此,这些方法没有考虑到用户的隐私。在本文件中,我们提出了在尊重隐私关切的同时学习自主驱动政策的新方法。我们建议采用同侪深联学习(DFL)方法,以完全分散的方式培训深层建筑,并消除中央管弦的需要。我们设计了新的联邦自主驱动网络(FADNet),它可以改善模型稳定性,确保趋同,并处理不平衡的数据分配问题,同时使用混合式学习方法进行培训。关于三个数据集的密集实验结果显示,我们与FADNet和DFLL的处理办法比其他最近的方法更准确。此外,我们的方法可以通过不向中央服务器收集用户数据来保持隐私。