Deep learning based electroencephalography (EEG) signal processing methods are known to suffer from poor test-time generalization due to the changes in data distribution. This becomes a more challenging problem when privacy-preserving representation learning is of interest such as in clinical settings. To that end, we propose a multi-source learning architecture where we extract domain-invariant representations from dataset-specific private encoders. Our model utilizes a maximum-mean-discrepancy (MMD) based domain alignment approach to impose domain-invariance for encoded representations, which outperforms state-of-the-art approaches in EEG-based emotion classification. Furthermore, representations learned in our pipeline preserve domain privacy as dataset-specific private encoding alleviates the need for conventional, centralized EEG-based deep neural network training approaches with shared parameters.
翻译:众所周知,由于数据分布的变化,基于深层学习的电子脑电学信号处理方法的测试时间一般化程度不高,因此,众所周知,由于数据分布的变化,深层学习基于电子脑电图的信号处理方法存在测试时间差的问题。当隐私保护代表性学习在临床环境中引起兴趣时,这个问题就成为一个更具有挑战性的问题。为此,我们提议了一个多源学习结构,在这个结构中,我们从特定的数据集专用的私人编码中提取域变量表。我们的模型使用基于最大中位差异(MMD)的域对准方法,强制对编码的表达方式实行域变量,这在基于电子脑电图的情感分类中超过了最先进的方法。此外,在我们的管道中学习到的域隐私作为特定数据集专用的私人编码,减少了对常规、集中的基于EEEG的深线网络培训方法以及共享参数的需要。