Re-ranking models refine item recommendation lists generated by the prior global ranking model, which have demonstrated their effectiveness in improving the recommendation quality. However, most existing re-ranking solutions only learn from implicit feedback with a shared prediction model, which regrettably ignore inter-item relationships under diverse user intentions. In this paper, we propose a novel Intention-aware Re-ranking Model with Dynamic Transformer Encoder (RAISE), aiming to perform user-specific prediction for each individual user based on her intentions. Specifically, we first propose to mine latent user intentions from text reviews with an intention discovering module (IDM). By differentiating the importance of review information with a co-attention network, the latent user intention can be explicitly modeled for each user-item pair. We then introduce a dynamic transformer encoder (DTE) to capture user-specific inter-item relationships among item candidates by seamlessly accommodating the learned latent user intentions via IDM. As such, one can not only achieve more personalized recommendations but also obtain corresponding explanations by constructing RAISE upon existing recommendation engines. Empirical study on four public datasets shows the superiority of our proposed RAISE, with up to 13.95%, 9.60%, and 13.03% relative improvements evaluated by Precision@5, MAP@5, and NDCG@5 respectively.
翻译:上个全球排名模式产生的项目建议清单经过重新排序的模型,表明其在提高建议质量方面的效力;然而,大多数现有的重新排序解决方案只能从一个共同预测模型的隐含反馈中学习,而共同预测模型则令人遗憾地忽略了不同用户的不同意图下的项目间关系;在本文件中,我们提出一个新的有动态变压器(ISAE)的有意识重新排序模型,目的是根据每个用户的用意对每个用户进行针对用户的预测。具体地说,我们首先提议用一个意图发现模块(IDM)从文本审查中挖掘潜在用户的意图。通过一个意图发现模块(IDM)来区分审查信息的重要性,潜在用户的用意可以明确为每个用户项目之间的预测模型建模。然后我们推出一个动态变压器(DTE),通过动态变压器(ISAF),以完整地容纳所学到的潜在用户意图,从而捕捉到项目候选人之间的具体用户间项目间项目间的关系。因此,我们不仅可以实现更个性化的建议,而且还可以通过现有建议引擎(IM)构建AISE),关于四个公共数据设置的重要性,通过共同使用网络(NAISAISARC5)和13.035分别评价的优势。