Competition-based approach to controlling the false discovery rate (FDR) recently rose to prominence when, generalizing it to sequential hypothesis testing, Barber and Cand\`es used it as part of their knockoff-filter. Control of the FDR implies that the, arguably more important, false discovery proportion is only controlled in an average sense. We present TDC-SB and TDC-UB that provide upper prediction bounds on the FDP in the list of discoveries generated when controlling the FDR using competition. Using simulated and real data we show that, overall, our new procedures offer significantly tighter upper bounds than ones obtained using the recently published approach of Katsevich and Ramdas, even when the latter is further improved using the interpolation concept of Goeman et al.
翻译:以竞争为基础的控制虚假发现率(FDR)方法最近越来越突出,因为Barber和Cand ⁇ es将它推广到连续的假设测试中,将它作为他们关闭过滤器的一部分。控制FDR意味着,可能更重要的虚假发现比例只是普通意义上的控制。我们介绍了TDC-SB和TDC-UB, 后者在利用竞争控制FDR时产生的发现清单中提供了对FDP的上限预测。我们使用模拟和真实数据,表明总体而言,我们的新程序比使用最近公布的Katsevich和Ramdas方法获得的程序高出许多,即使后者利用Goeman等人的内插概念得到了进一步的改进。