项目名称: 有理曲面及其相关问题的研究
项目编号: No.11271268
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 张加劲
作者单位: 四川大学
项目金额: 60万元
中文摘要: 本申请项目主要研究有理曲面及其相关系列问题,具体包括:(1)有理曲面的Picard格的根格结构,有理曲面上的主丛及其伴随丛、表示丛,有理曲面上的有理曲线的计数及其与根格的theta级数的关系;(2)有理曲面的周期映射、模空间及其与椭圆曲线的退化乃至family上的主丛的关系,相关模空间的边界点、紧致化及其与有理曲面的退化和奇点的关系等相关系列问题。这一系列研究将综合考虑并拓展Looijenga, Donagi, Friedman, Morgan, Witten, Allcock, Dolgachev, Kondo,Saito等的深刻工作,并有助于理解数学物理中的F理论与弦理论之间的对偶性。
中文关键词: 有理曲面;模空间;椭圆曲线;向量丛;
英文摘要: This project plans to study rational surfaces and some related problems, including: (1) root lattices in the Picard lattices of certain rational surfaces, principal bundles as well as their adjoint vector bundles and other representation bundles, and the counting of certain rational curves as well as its relation with theta series of root lattices; (2) period maps and moduli spaces of rational surfaces and the relation with certain principal bundles over degenerations and families of elliptic curves, the boundary components and the compactifications of these moduli spaces, and their relation with degenerations and singularities of rational surfaces. This study will unify and develop the deep work of Looijenga, Donagi, Friedman, Morgan, Witten, Allcock, Dolgachev, Kondo, Saito and so on. Moreover, this study will be helpful for understanding the duality between F theory and string theory in mathematical physics.
英文关键词: rational surface;moduli space;elliptic curve;vector bundle;