Distributed data naturally arise in scenarios involving multiple sources of observations, each stored at a different location. Directly pooling all the data together is often prohibited due to limited bandwidth and storage, or due to privacy protocols. This paper introduces a new robust distributed algorithm for fitting linear regressions when data are subject to heavy-tailed and/or asymmetric errors with finite second moments. The algorithm only communicates gradient information at each iteration and therefore is communication-efficient. Statistically, the resulting estimator achieves the centralized nonasymptotic error bound as if all the data were pooled together and came from a distribution with sub-Gaussian tails. Under a finite $(2+\delta)$-th moment condition, we derive a Berry-Esseen bound for the distributed estimator, based on which we construct robust confidence intervals. Numerical studies further confirm that compared with extant distributed methods, the proposed methods achieve near-optimal accuracy with low variability and better coverage with tighter confidence width.


翻译:分布式数据自然出现在多个观测来源的情景中,每个观测来源都储存在不同地点。 由于带宽和存储有限,或者由于隐私协议, 直接将所有数据集中在一起往往被禁止。 本文引入了一种新的稳健分布式算法, 用于在数据发生重尾和/或不对称误差时安装线性回归( 有限秒) 。 该算法只在每个迭代中传递梯度信息, 因而具有通信效率。 从统计上看, 由此得出的估计器实现了集中式非抽取错误, 仿佛所有数据都是集合起来的, 并且来自与亚加西南尾巴的分布。 在一个有限的 $( 2 ⁇ delta) 时刻条件下, 我们为分布式估测仪找到一条连接的“ 莓- Esseen ” 值, 我们以此为基础构建稳健的信心间隔。 数值研究进一步证实, 与流传方法相比, 拟议方法的精确度接近最优化, 且变化性小, 且覆盖范围更窄。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
一份简单《图神经网络》教程,28页ppt
专知会员服务
126+阅读 · 2020年8月2日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月6日
Arxiv
0+阅读 · 2021年9月4日
Arxiv
0+阅读 · 2021年9月3日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
4+阅读 · 2019年1月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员