In this paper, we study a general class of causal processes with exogenous covariates, including many classical processes such as the ARMA-GARCH, APARCH, ARMAX, GARCH-X and APARCH-X processes. Under some Lipschitz-type conditions, the existence of a $\tau$-weakly dependent strictly stationary and ergodic solution is established. We provide conditions for the strong consistency and derive the asymptotic distribution of the quasi-maximum likelihood estimator (QMLE), both when the true parameter is an interior point of the parameter's space and when it belongs to the boundary. A significance Wald-type test of parameter is developed. This test is quite extensive and includes the test of nullity of the parameter's components, which in particular, allows us to assess the relevance of the exogenous covariates. Relying on the QMLE of the model, we also propose a penalized criterion to address the problem of the model selection for this class. The weak and the strong consistency of the procedure are established. Finally, Monte Carlo simulations are conducted to numerically illustrate the main results.


翻译:在本文中,我们研究了与外生共变体(包括ARMA-GARCHH、APARCH、ARMAX、GARCH-X和APARCH-X等许多古典工艺,例如ARMA-GARCHH、APARCH、ARMAX、GARCH-X和APARCH-X等。在某些Lipschitz类条件下,确定了一个严格依赖固定和垂直的因果过程的一般类别。我们为准最大可能性估测器(QMLE)提供了强有力的一致性条件,并得出了无症状的分布。当真实参数是参数空间的内部点和它属于边界时。开发了一个意义重大的Wald型参数测试。这一测试相当广泛,包括参数组成部分的无效性测试,这特别使我们能够评估外生共变体的相关性。根据模型的QMLE,我们还提出了一个处理这一类别模型选择问题的惩罚性标准。程序弱弱和强烈的连贯性已经确立。最后,蒙特卡洛模拟将用数字来说明主要结果。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】贝叶斯推断随机过程,449页pdf
专知会员服务
150+阅读 · 2020年8月27日
专知会员服务
139+阅读 · 2020年5月19日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
159+阅读 · 2020年1月16日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2018年7月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月26日
Arxiv
4+阅读 · 2018年4月26日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】贝叶斯推断随机过程,449页pdf
专知会员服务
150+阅读 · 2020年8月27日
专知会员服务
139+阅读 · 2020年5月19日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
159+阅读 · 2020年1月16日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2018年7月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员