Covariance matrix tapers have a long history in signal processing and related fields. Examples of applications include autoregressive models (promoting a banded structure) or beamforming (widening the spectral null width associated with an interferer). In this paper, the focus is on high-dimensional setting where the dimension $p$ is high, while the data aspect ratio $n/p$ is low. We propose an estimator called Tabasco (TApered or BAnded Shrinkage COvariance matrix) that shrinks the tapered sample covariance matrix towards a scaled identity matrix. We derive optimal and estimated (data adaptive) regularization parameters that are designed to minimize the mean squared error (MSE) between the proposed shrinkage estimator and the true covariance matrix. These parameters are derived under the general assumption that the data is sampled from an unspecified elliptically symmetric distribution with finite 4th order moments (both real- and complex-valued cases are addressed). Simulation studies show that the proposed Tabasco outperforms all competing tapering covariance matrix estimators in diverse setups. A space-time adaptive processing (STAP) application also illustrates the benefit of the proposed estimator in a practical signal processing setup.
翻译:在信号处理和相关字段中, 共变矩阵梯子有很长的历史。 应用的例子包括自动递增模型( 促进带状结构) 或波形化( 扩大与干扰器相关的光谱无宽度) 。 在本文中, 重点是维度高的高维设置, 而数据方位比 $/ p$ 是低的。 我们建议使用一个叫做 Tabasco (Tabasco 或 BANDAND Slinkage Coflication 矩阵) 的天体分布, 将磁带样本共变异矩阵压缩到一个缩放的身份矩阵。 我们得出最佳和估计( 数据适应) 规范化参数, 设计这些参数是为了将拟议缩小拟议缩放的缩放估计和真实共变异矩阵之间的平均正方差( MSE ) 。 这些参数是在一般假设下得出的, 即数据是从一个不确定的ell式对称的对称分布有一定的四阶点( 包括真实和复杂估值的个案 ) 。 模拟研究表明, 拟议的 Tabascosic 超越了所有相调调调制调制的共变换矩阵矩阵( ) 矩阵测量图图图中, 也展示了不同的空间调整了一套空间调整图案 。 。