This paper focuses on learning rate analysis of distributed kernel ridge regression for strong mixing sequences. Using a recently developed integral operator approach and a classical covariance inequality for Banach-valued strong mixing sequences, we succeed in deriving optimal learning rate for distributed kernel ridge regression. As a byproduct, we also deduce a sufficient condition for the mixing property to guarantee the optimal learning rates for kernel ridge regression. Our results extend the applicable range of distributed learning from i.i.d. samples to non-i.i.d. sequences.


翻译:本文侧重于对分布式内核脊回归进行强烈混合序列的学习率分析。我们采用最近开发的综合操作员办法和对Banach估值强力混合序列的典型共变量不平等,成功地为分布式内核脊回归得出最佳学习率。作为一个副产品,我们还推断出混合财产的充足条件,以保证内核脊回归的最佳学习率。我们的结果扩大了从i.d.样本到非i.d.序列的可应用分布式学习范围。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
浅谈主动学习(Active Learning)
凡人机器学习
31+阅读 · 2020年6月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年10月22日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
浅谈主动学习(Active Learning)
凡人机器学习
31+阅读 · 2020年6月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员