We consider the distributed complexity of the (degree+1)-list coloring problem, in which each node $u$ of degree $d(u)$ is assigned a palette of $d(u)+1$ colors, and the goal is to find a proper coloring using these color palettes. The (degree+1)-list coloring problem is a natural generalization of the classical $(\Delta+1)$-coloring and $(\Delta+1)$-list coloring problems, both being benchmark problems extensively studied in distributed and parallel computing. In this paper we settle the complexity of the (degree+1)-list coloring problem in the Congested Clique model by showing that it can be solved deterministically in a constant number of rounds.
翻译:暂无翻译