For a given elliptic curve $E$ over a finite local ring, we denote by $E^{\infty}$ its subgroup at infinity. Every point $P \in E^{\infty}$ can be described solely in terms of its $x$-coordinate $P_x$, which can be therefore used to parameterize all its multiples $nP$. We refer to the coefficient of $(P_x)^i$ in the parameterization of $(nP)_x$ as the $i$-th multiplication polynomial. We show that this coefficient is a degree-$i$ rational polynomial without a constant term in $n$. We also prove that no primes greater than $i$ may appear in the denominators of its terms. As a consequence, for every finite field $\mathbb{F}_q$ and any $k\in\mathbb{N}^*$, we prescribe the group structure of a generic elliptic curve defined over $\mathbb{F}_q[X]/(X^k)$, and we show that their ECDLP on $E^{\infty}$ may be efficiently solved.
翻译:对于一定的本地环形的某种椭圆曲线 $E美元,我们用美元表示其分组的无穷度。每分点美元或以美元为单位,每一分美元或以美元为单位,只能用美元乘以美元乘以美元来表示,因此,可以使用美元乘以美元乘以美元,将其所有倍数参数化为nP美元。因此,我们用美元(P_x)美元乘以美元作为(nP)x美元参数化的系数,作为美元乘以倍倍数倍数的倍数。我们表明,这一系数是一定-美元的合理多元系数,没有以美元为单位的常数。我们还证明,其值的分母值不能大于美元。因此,对于每个限定字段来说,对于美元/美元/美元和任何美元/in\mathb{N%美元,我们规定一个定义在$\mathb{F}/(X)美元/(X)美元/(X)美元)上通用的椭曲线的组结构。我们证明,在美元上可以有效解决Ein。