We study a fundamental model of online preference aggregation, where an algorithm maintains an ordered list of $n$ elements. An input is a stream of preferred sets $R_1, R_2, \dots, R_t, \dots$. Upon seeing $R_t$ and without knowledge of any future sets, an algorithm has to rerank elements (change the list ordering), so that at least one element of $R_t$ is found near the list front. The incurred cost is a sum of the list update costs (the number of swaps of neighboring list elements) and access costs (position of the first element of $R_t$ on the list). This scenario occurs naturally in applications such as ordering items in an online shop using aggregated preferences of shop customers. The theoretical underpinning of this problem is known as Min-Sum Set Cover. Unlike previous work (Fotakis et al., ICALP 2020, NIPS 2020) that mostly studied the performance of an online algorithm ALG against the static optimal solution (a single optimal list ordering), in this paper, we study an arguably harder variant where the benchmark is the provably stronger optimal dynamic solution OPT (that may also modify the list ordering). In terms of an online shop, this means that the aggregated preferences of its user base evolve with time. We construct a computationally efficient randomized algorithm whose competitive ratio (ALG-to-OPT cost ratio) is $O(r^2)$ and prove the existence of a deterministic $O(r^4)$-competitive algorithm. Here, $r$ is the maximum cardinality of sets $R_t$. This is the first algorithm whose ratio does not depend on $n$: the previously best algorithm for this problem was $O(r^{3/2} \cdot \sqrt{n})$-competitive and $\Omega(r)$ is a lower bound on the performance of any deterministic online algorithm.
翻译:我们研究了一种基本的在线偏好聚合模型,其中算法维护了一个有序列表中的$n$个元素。输入是一系列首选集合$R_1,R_2,\dots,R_t,\dots$。在看到$R_t$并且没有关于未来集合的任何信息的情况下,算法必须重新排列元素(更改列表排序),以便$R_t$中至少有一个元素接近列表前面。产生的成本是列表更新成本(相邻列表元素交换次数)和访问成本($R_t$第一个元素在列表上的位置)的总和。此场景在应用中自然发生,例如使用商店客户的汇总偏好来订购在线商店中的物品。这个问题的理论基础被称为 Min-Sum 集合覆盖。与以前的工作 (Fotakis et al.,ICALP 2020,NIPS 2020) 大多数研究在线算法ALG的性能与静态最优解 (一种最优列表排序)之间的性能不同,本文研究了一个可能更难的变种,其中基准是可证明更强的 OPT 最优动态解决方案(也可能修改列表排序)。在在线商店方面,这意味着其用户群的聚合偏好会随时间演变。我们构建了一种计算上高效的随机算法,其竞争比(ALG比 OPT 成本比)为 $O(r^2)$,并证明了存在一种确定性 $O(r^4)$ 竞争算法。其中,$r$ 是集合 $R_t$ 的最大基数。这是第一种其比率不依赖于 $n$ 的算法:此问题先前的最佳算法是 $O(r^{3/2} \cdot \sqrt{n})$-competitive,并且对于任何确定性在线算法的性能,$\Omega(r)$ 是其下界。