A one-dimensional sequence $u_0, u_1, u_2, \ldots \in [0, 1)$ is said to be completely uniformly distributed (CUD) if overlapping $s$-blocks $(u_i, u_{i+1}, \ldots , u_{i+s-1})$, $i = 0, 1, 2, \ldots$, are uniformly distributed for every dimension $s \geq 1$. This concept naturally arises in Markov chain quasi-Monte Carlo (QMC). However, the definition of CUD sequences is not constructive, and thus there remains the problem of how to implement the Markov chain QMC algorithm in practice. Harase (2021) focused on the $t$-value, which is a measure of uniformity widely used in the study of QMC, and implemented short-period Tausworthe generators (i.e., linear feedback shift register generators) over the two-element field $\mathbb{F}_2$ that approximate CUD sequences by running for the entire period. In this paper, we generalize a search algorithm over $\mathbb{F}_2$ to that over arbitrary finite fields $\mathbb{F}_b$ with $b$ elements and conduct a search for Tausworthe generators over $\mathbb{F}_b$ with $t$-values zero (i.e., optimal) for dimension $s = 3$ and small for $s \geq 4$, especially in the case where $b = 3, 4$, and $5$. We provide a parameter table of Tausworthe generators over $\mathbb{F}_4$, and report a comparison between our new generators over $\mathbb{F}_4$ and existing generators over $\mathbb{F}_2$ in numerical examples using Markov chain QMC.
翻译:一维序列 $u_0, u_1, u_2, \ldots \in [0, 1)$ 是完全均匀分布的,如果重叠的 $s$ 元组 $(u_i, u_{i+1}, \ldots , u_{i+s-1})$,$i = 0, 1, 2, \ldots$ 在所有维度 $s \geq 1$ 时是均匀分布的。这个概念在Markov链拟蒙特卡罗(QMC)中自然而然地产生。然而,CUD序列的定义不是具有构造性的,因此仍然存在如何在实践中实现Markov链QMC算法的问题。Harase(2021)关注 $t$-值,这是在QMC研究中广泛使用的均匀性度量,并使用两元域 $\mathbb{F}_2$ 上的短周期Tausworthe生成器(即,线性反馈移位寄存器生成器)近似运行整个周期的CUD序列。在本文中,我们将 $\mathbb{F}_2$ 上的搜索算法推广到 $b$ 元素的任意有限域 $\mathbb{F}_b$ 上,并在 $\mathbb{F}_b$ 上进行关于 $s=3$ 的维数下 $t$-值为零(即,最优)和$s \geq 4$ 的小规模 Tausworthe生成器搜索,特别是在 $b=3,4$ 和 $5$ 的情况下。我们提供了 $\mathbb{F}_4$ 上的Tausworthe生成器的参数表,并在使用Markov链QMC的数值例子中报告了我们新的 $\mathbb{F}_4$ 生成器与现有 $\mathbb{F}_2$ 生成器之间的比较。