We constructed a hippocampal formation (HPF)-inspired probabilistic generative model (HPF-PGM) using the structure-constrained interface decomposition method. By modeling brain regions with PGMs, this model is positioned as a module that can be integrated as a whole-brain PGM. We discuss the relationship between simultaneous localization and mapping (SLAM) in robotics and the findings of HPF in neuroscience. Furthermore, we survey the modeling for HPF and various computational models, including brain-inspired SLAM, spatial concept formation, and deep generative models. The HPF-PGM is a computational model that is highly consistent with the anatomical structure and functions of the HPF, in contrast to typical conventional SLAM models. By referencing the brain, we suggest the importance of the integration of egocentric/allocentric information from the entorhinal cortex to the hippocampus and the use of discrete-event queues.
翻译:我们用结构限制的界面分解法构建了由河马营形成(HPF)激励的概率基因模型(HPF-PGM),通过以 PGM 模拟大脑区域,该模型被定位为一个模块,可以作为整体脑成形模型。我们讨论了机器人同时定位和绘图(SLAM)与HPF在神经科学方面的发现之间的关系。此外,我们调查了HPF的模型和各种计算模型,包括由大脑启发的 SLAM、空间概念形成和深层基因模型。HPF-PGM 是一种与HPF的解剖结构和功能高度一致的计算模型,与典型的常规的SLMM 模型不同。我们通过参考大脑,提出将从entorhinal 皮层到河马峰的自我中心/控制中心信息整合起来的重要性,以及使用离心阵列的重要性。