Raindrops adhered to a glass window or camera lens can severely hamper the visibility of a background scene and degrade an image considerably. In this paper, we address the problem by visually removing raindrops, and thus transforming a raindrop degraded image into a clean one. The problem is intractable, since first the regions occluded by raindrops are not given. Second, the information about the background scene of the occluded regions is completely lost for most part. To resolve the problem, we apply an attentive generative network using adversarial training. Our main idea is to inject visual attention into both the generative and discriminative networks. During the training, our visual attention learns about raindrop regions and their surroundings. Hence, by injecting this information, the generative network will pay more attention to the raindrop regions and the surrounding structures, and the discriminative network will be able to assess the local consistency of the restored regions. This injection of visual attention to both generative and discriminative networks is the main contribution of this paper. Our experiments show the effectiveness of our approach, which outperforms the state of the art methods quantitatively and qualitatively.
翻译:紧跟在玻璃窗或相机镜头上的雨滴会严重妨碍背景场景的可见度并大大降低图像。 在本文中,我们通过直观地排除雨滴,从而将雨滴退化的图像转化为干净的图像来解决这个问题。 问题是棘手的, 因为首先没有给出雨滴所覆盖的区域。 其次, 有关隐蔽区域的背景场景的信息大部分完全丢失了。 为了解决这个问题, 我们使用对抗性训练, 应用一个专注的基因化网络。 我们的主要想法是将视觉注意力注入基因化和歧视性网络中。 在培训期间, 我们的视觉注意力会了解雨滴区域及其周围。 因此, 通过注入这一信息, 基因化网络将更多地关注雨滴区域及其周围结构, 以及歧视网络将能够评估恢复区域的地方一致性。 这种对基因化和歧视性网络的视觉关注是本文的主要贡献。 我们的实验展示了我们方法的有效性, 它在数量上和质量上超过了艺术方法的状态。