Machine learning (ML) depends on data to train and verify models. Very often, organizations outsource processes related to data work (i.e., generating and annotating data and evaluating outputs) through business process outsourcing (BPO) companies and crowdsourcing platforms. This paper investigates outsourced ML data work in Latin America by studying three platforms in Venezuela and a BPO in Argentina. We lean on the Foucauldian notion of dispositif to define the data-production dispositif as an ensemble of discourses, actions, and objects strategically disposed to (re)produce power/knowledge relations in data and labor. Our dispositif analysis comprises the examination of 210 data work instruction documents, 55 interviews with data workers, managers, and requesters, and participant observation. Our findings show that discourses encoded in instructions reproduce and normalize the worldviews of requesters. Precarious working conditions and economic dependency alienate workers, making them obedient to instructions. Furthermore, discourses and social contexts materialize in artifacts, such as interfaces and performance metrics, limiting workers' agency and normalizing specific ways of interpreting data. We conclude by stressing the importance of counteracting the data-production dispositif by fighting alienation and precarization, and empowering data workers to become assets in the quest for high-quality data.


翻译:通常,各组织通过业务流程外包(BPO)公司和众包平台,外包与数据工作有关的流程(即生成和说明数据并评价产出),本文调查拉丁美洲外包的ML数据工作,研究了委内瑞拉的三个平台和阿根廷的一个BPO。我们依靠Foucauldian的处置概念,将数据生产处置作为讨论、行动和物体的组合,从战略上处理(重新)在数据和劳动方面建立权力/知识关系。我们的处置分析包括审查210份数据工作指导文件,55次与数据工作者、管理人员和请求者进行的访谈,以及与会者的观察。我们的调查结果显示,指令中的论述复制了提出请求者的世界观并使之正常化。我们依靠Foucauldidian的处置概念,将数据制作工作环境和经济依赖性疏导工人,使他们服从指示。此外,讨论和社会环境在工艺品中出现,例如接口和业绩衡量标准、限制工人的代理机构以及使数据标准化的具体方法对数据进行规范化。我们的结论是,通过打击数据的生成前数据质量,使数据变得反向数据升级的重要性。我们最后强调数据的重要性。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
An Introduction to Lifelong Supervised Learning
Arxiv
0+阅读 · 2022年7月12日
Arxiv
22+阅读 · 2021年12月19日
Arxiv
30+阅读 · 2021年8月18日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员