Operational knowledge is one of the most valuable assets in a company, as it provides a strategic advantage over competitors and ensures steady and optimal operation in machines. An (interactive) assessment system on the shop floor can optimize the process and reduce stopovers because it can provide constant valuable information regarding the machine condition to the operators. However, formalizing operational (tacit) knowledge to explicit knowledge is not an easy task. This transformation considers modeling expert knowledge, quantification of knowledge uncertainty, and validation of the acquired knowledge. This study proposes a novel approach for production assessment using a knowledge transfer framework and evidence theory to address the aforementioned challenges. The main contribution of this paper is a methodology for the formalization of tacit knowledge based on an extended failure mode and effect analysis for knowledge extraction, as well as the use of evidence theory for the uncertainty definition of knowledge. Moreover, this approach uses primitive recursive functions for knowledge modeling and proposes a validation strategy of the knowledge using machine data. These elements are integrated into an interactive recommendation system hosted on a backend that uses HoloLens as a visual interface. We demonstrate this approach using an industrial setup: a laboratory bulk good system. The results yield interesting insights, including the knowledge validation, uncertainty behavior of knowledge, and interactive troubleshooting for the machine operator.


翻译:业务知识是公司最宝贵的资产之一,因为它为竞争者提供了战略优势,并确保了机械的稳定和最佳运作。在商店楼层的(互动)评估系统可以优化流程,减少中途停留,因为它能够向操作者提供有关机器状况的经常宝贵信息。然而,将操作(隐蔽)知识正规化以获得明确的知识并不是一件容易的任务。这种转变考虑的是专家知识的建模、知识不确定性的量化和对所获知识的验证。本研究报告提出了一种新颖的生产评估方法,利用知识转让框架和证据理论来应对上述挑战。本文的主要贡献是,根据知识提取的扩展失败模式和影响分析以及利用证据理论来界定知识的不确定性,将隐性知识正规化。此外,这一方法还利用原始的循环功能来进行知识建模,并提出了使用机器数据进行知识验证的战略。这些要素被纳入一个以HoloLens作为视觉界面的后端为主的互动式建议系统。我们用一个工业设置来演示这一方法:一个麻烦实验室散装的好系统。结果产生令人感兴趣的了解的不确定性,包括互动式的机器操作者。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Arxiv
0+阅读 · 2022年8月27日
Arxiv
0+阅读 · 2022年8月25日
Arxiv
18+阅读 · 2020年10月9日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员