Operational knowledge is one of the most valuable assets in a company, as it provides a strategic advantage over competitors and ensures steady and optimal operation in machines. An (interactive) assessment system on the shop floor can optimize the process and reduce stopovers because it can provide constant valuable information regarding the machine condition to the operators. However, formalizing operational (tacit) knowledge to explicit knowledge is not an easy task. This transformation considers modeling expert knowledge, quantification of knowledge uncertainty, and validation of the acquired knowledge. This study proposes a novel approach for production assessment using a knowledge transfer framework and evidence theory to address the aforementioned challenges. The main contribution of this paper is a methodology for the formalization of tacit knowledge based on an extended failure mode and effect analysis for knowledge extraction, as well as the use of evidence theory for the uncertainty definition of knowledge. Moreover, this approach uses primitive recursive functions for knowledge modeling and proposes a validation strategy of the knowledge using machine data. These elements are integrated into an interactive recommendation system hosted on a backend that uses HoloLens as a visual interface. We demonstrate this approach using an industrial setup: a laboratory bulk good system. The results yield interesting insights, including the knowledge validation, uncertainty behavior of knowledge, and interactive troubleshooting for the machine operator.
翻译:业务知识是公司最宝贵的资产之一,因为它为竞争者提供了战略优势,并确保了机械的稳定和最佳运作。在商店楼层的(互动)评估系统可以优化流程,减少中途停留,因为它能够向操作者提供有关机器状况的经常宝贵信息。然而,将操作(隐蔽)知识正规化以获得明确的知识并不是一件容易的任务。这种转变考虑的是专家知识的建模、知识不确定性的量化和对所获知识的验证。本研究报告提出了一种新颖的生产评估方法,利用知识转让框架和证据理论来应对上述挑战。本文的主要贡献是,根据知识提取的扩展失败模式和影响分析以及利用证据理论来界定知识的不确定性,将隐性知识正规化。此外,这一方法还利用原始的循环功能来进行知识建模,并提出了使用机器数据进行知识验证的战略。这些要素被纳入一个以HoloLens作为视觉界面的后端为主的互动式建议系统。我们用一个工业设置来演示这一方法:一个麻烦实验室散装的好系统。结果产生令人感兴趣的了解的不确定性,包括互动式的机器操作者。