Behavioral models enable the analysis of the functionality of software product lines (SPL), e.g., model checking and model-based testing. Model learning aims at constructing behavioral models for software systems in some form of a finite state machine. Due to the commonalities among the products of an SPL, it is possible to reuse the previously learned models during the model learning process. In this paper, an adaptive approach (the $\text{PL}^*$ method) for learning the product models of an SPL is presented based on the well-known $L^*$ algorithm. In this method, after model learning of each product, the sequences in the final observation table are stored in a repository which will be used to initialize the observation table of the remaining products to be learned. The proposed algorithm is evaluated on two open-source SPLs and the total learning cost is measured in terms of the number of rounds, the total number of resets and input symbols. The results show that for complex SPLs, the total learning cost for the $\text{PL}^*$ method is significantly lower than that of the non-adaptive learning method in terms of all three metrics. Furthermore, it is observed that the order in which the products are learned affects the efficiency of the $\text{PL}^*$ method. Based on this observation, we introduced a heuristic to determine an ordering which reduces the total cost of adaptive learning in both case studies.


翻译:模型学习的目的是为软件系统以某种形式的有限状态机器的形式建立行为模型。由于SPL产品具有共同性,因此有可能在模型学习过程中重新使用以前学到的模型。在本文中,学习SPL产品模型的适应性方法($text{PL ⁇ $的方法)是根据众所周知的$L ⁇ $算法提出的。在这种方法中,在对每种产品进行模型学习后,最后观察表的序列将存储在一个存储库中,用于初始化有待学习的其余产品的观察表。拟议的算法将用两个开放源代码SPL产品加以评价,学习总成本将用圆轮数、Resetes和输入符号的总数来衡量。结果显示,对于复杂的SPLSL, $\pl{PL ⁇ $方法的总学习成本大大低于非适应性学习总成本,从所有三种观察方法的学习效率来看,这三种方法都降低了我们学习的学习水平。此外,在学习模型的排序中,我们观察到了三种方法的学习效率。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
39+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2021年3月29日
Adaptive Synthetic Characters for Military Training
Arxiv
46+阅读 · 2021年1月6日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关VIP内容
专知会员服务
124+阅读 · 2020年9月8日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
39+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员