Lipschitz regularized f-divergences are constructed by imposing a bound on the Lipschitz constant of the discriminator in the variational representation. They interpolate between the Wasserstein metric and f-divergences and provide a flexible family of loss functions for non-absolutely continuous (e.g. empirical) distributions, possibly with heavy tails. We construct Lipschitz regularized gradient flows on the space of probability measures based on these divergences. Examples of such gradient flows are Lipschitz regularized Fokker-Planck and porous medium partial differential equations (PDEs) for the Kullback-Leibler and alpha-divergences, respectively. The regularization corresponds to imposing a Courant-Friedrichs-Lewy numerical stability condition on the PDEs. For empirical measures, the Lipschitz regularization on gradient flows induces a numerically stable transporter/discriminator particle algorithm, where the generative particles are transported along the gradient of the discriminator. The gradient structure leads to a regularized Fisher information (particle kinetic energy) used to track the convergence of the algorithm. The Lipschitz regularized discriminator can be implemented via neural network spectral normalization and the particle algorithm generates approximate samples from possibly high-dimensional distributions known only from data. Notably, our particle algorithm can generate synthetic data even in small sample size regimes. A new data processing inequality for the regularized divergence allows us to combine our particle algorithm with representation learning, e.g. autoencoder architectures. The resulting algorithm yields markedly improved generative properties in terms of efficiency and quality of the synthetic samples. From a statistical mechanics perspective the encoding can be interpreted dynamically as learning a better mobility for the generative particles.
翻译:Lipschitz 常规化的梯度流动是通过在变异代表制中,对利普西茨歧视方的利普西茨常数进行约束,在瓦瑟斯坦度和飞度度指标之间进行相互调试,为非绝对连续分布(例如经验)提供灵活的损失函数组合,可能存在重尾巴。我们在基于这些差异的概率测量空间上建立利普西茨定式梯度流动。这种梯度流动的例子有:利普西茨定制的Fokker-Planck,以及库尔回流-利伯尔和阿尔法度变异性(PDEs)的中度偏差方(PDEs),分别涉及库尔回流-利伯利普利特指标和飞地变异性等值等值。规范化相当于对非绝对连续连续分布(例如经验)分配(例如经验性)分配。关于梯度流动的利普西茨定式梯度的规律化梯度流动在根据这些差异测量空间上可以带来一个数字稳定的运输器/分解器/分解粒算算法,只有基因颗粒子在加速中进行迁移。新的变化粒变异粒变变换。 梯度结构结构可以导致定期化的变化的精化的精化的精化的精化的精化的精化的精化的精化的精化的精化的精化的精化的精化的精化的精化的精化的精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化性化性化精化精化精化精化精化精化精化精化精化的精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化精化