We present two different strategies to extend the classical multi-label chaining approach to handle imprecise probability estimates. These estimates use convex sets of distributions (or credal sets) in order to describe our uncertainty rather than a precise one. The main reasons one could have for using such estimations are (1) to make cautious predictions (or no decision at all) when a high uncertainty is detected in the chaining and (2) to make better precise predictions by avoiding biases caused in early decisions in the chaining. We adapt both strategies to the case of the naive credal classifier, showing that this adaptations are computationally efficient. Our experimental results on missing labels, which investigate how reliable these predictions are in both approaches, indicate that our approaches produce relevant cautiousness on those hard-to-predict instances where the precise models fail.
翻译:我们提出了两种不同的战略,以扩大传统的多标签链法,处理不精确的概率估计。这些估计使用分布图(或信条套)来描述我们的不确定性,而不是精确的不确定性。 使用这种估计的主要理由可能是:(1) 当链条中检测到高度不确定性时作出谨慎的预测(或根本没有决定 ), (2) 避免链条早期决定中的偏见,从而作出更准确的预测。 我们两种战略都适应天真的毛骨悚然分类法的情况,表明这种调整是计算效率高的。 我们关于缺失标签的实验结果调查了这些预测在两种方法中的可靠性,表明我们的方法在精确模型失败的难以预测的情况下产生了相关的谨慎。