Contrastive learning is an efficient approach to self-supervised representation learning. Although recent studies have made progress in the theoretical understanding of contrastive learning, the investigation of how to characterize the clusters of the learned representations is still limited. In this paper, we aim to elucidate the characterization from theoretical perspectives. To this end, we consider a kernel-based contrastive learning framework termed Kernel Contrastive Learning (KCL), where kernel functions play an important role when applying our theoretical results to other frameworks. We introduce a formulation of the similarity structure of learned representations by utilizing a statistical dependency viewpoint. We investigate the theoretical properties of the kernel-based contrastive loss via this formulation. We first prove that the formulation characterizes the structure of representations learned with the kernel-based contrastive learning framework. We show a new upper bound of the classification error of a downstream task, which explains that our theory is consistent with the empirical success of contrastive learning. We also establish a generalization error bound of KCL. Finally, we show a guarantee for the generalization ability of KCL to the downstream classification task via a surrogate bound.
翻译:对比学习是一种有效的自监督学习方法。虽然最近的研究在对比学习的理论理解方面取得了进展,但有关如何表征所学表示的簇的研究仍然有限。本文旨在通过理论角度阐明字符化表示学习的簇。为此,我们考虑了一个基于核的对比学习框架,称为核对比学习(Kernel Contrastive Learning, KCL)。当将我们的理论结果应用于其他框架时,核函数发挥了重要作用。我们利用统计依赖视角介绍了所学表示的相似性结构的表达方式。通过这种表示方式,我们研究了基于核的对比损失的理论性质。首先,我们证明了该表示方法表征了基于核的对比学习框架中所学表示的结构。我们展示了一个下游任务分类错误的新上界,解释了我们的理论与对比学习的经验成功是相一致的。我们还建立了KCL的一般化误差界。最后,我们通过一个替代界,证明了KCL的泛化能力对下游分类任务也是有保证的。