Fuzzy Extractor (FE) and Fuzzy Signature (FS) are useful schemes for generating cryptographic keys from fuzzy data such as biometric features. Several techniques have been proposed to implement FE and FS for fuzzy data in an Euclidean space, such as facial feature vectors, that use triangular lattice-based error correction. In these techniques, solving the closest vector problem (CVP) in a high dimensional (e.g., 128--512 dim.) lattice is required at the time of key reproduction or signing. However, solving CVP becomes computationally hard as the dimension $n$ increases. In this paper, we first propose a CVP algorithm in triangular lattices with $O(n \log n)$-time whereas the conventional one requires $O(n^2)$-time. Then we further improve it and construct an $O(n)$-time algorithm.
翻译:暂无翻译