A common problem affecting neural network (NN) approximations of model predictive control (MPC) policies is the lack of analytical tools to assess the stability of the closed-loop system under the action of the NN-based controller. We present a general procedure to quantify the performance of such a controller, or to design minimum complexity NNs with rectified linear units (ReLUs) that preserve the desirable properties of a given MPC scheme. By quantifying the approximation error between NN-based and MPC-based state-to-input mappings, we first establish suitable conditions involving two key quantities, the worst-case error and the Lipschitz constant, guaranteeing the stability of the closed-loop system. We then develop an offline, mixed-integer optimization-based method to compute those quantities exactly. Together these techniques provide conditions sufficient to certify the stability and performance of a ReLU-based approximation of an MPC control law.


翻译:影响模型预测控制(MPC)政策神经网络(NN)近似值的一个常见问题是缺乏分析工具来评估NN控制器操作下闭环系统的稳定性,我们提出了一个一般程序来量化这种控制器的性能,或设计最低复杂性的NNP,使用经纠正的线性单位(ReLUs)来维护特定MPC计划的适当性能。通过量化基于NN和基于MPC的州对投入绘图之间的近似误差,我们首先建立了两个关键数量的合适条件,即最坏的错误和利普西茨常数,保证闭环系统的稳定。然后我们开发了一种离线、混合整数优化法,准确计算这些数量。这些技术共同提供了足以证明基于RELU的近似值的MPC控制法的稳定性和性能的条件。

0
下载
关闭预览

相关内容

专知会员服务
40+阅读 · 2021年7月5日
机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
86+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
172+阅读 · 2020年5月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
度量学习中的pair-based loss
极市平台
65+阅读 · 2019年7月17日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
语义分割 | context relation
极市平台
8+阅读 · 2019年2月9日
Network Embedding 指南
专知
21+阅读 · 2018年8月13日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
测试对比TensorFlow、MXNet、CNTK、Theano四个框架
炼数成金订阅号
3+阅读 · 2017年9月18日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年1月26日
Arxiv
0+阅读 · 2022年1月22日
Arxiv
0+阅读 · 2022年1月21日
Arxiv
0+阅读 · 2022年1月20日
Relational Graph Attention Networks
Arxiv
3+阅读 · 2019年4月11日
VIP会员
相关VIP内容
专知会员服务
40+阅读 · 2021年7月5日
机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
86+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
172+阅读 · 2020年5月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
度量学习中的pair-based loss
极市平台
65+阅读 · 2019年7月17日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
语义分割 | context relation
极市平台
8+阅读 · 2019年2月9日
Network Embedding 指南
专知
21+阅读 · 2018年8月13日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
测试对比TensorFlow、MXNet、CNTK、Theano四个框架
炼数成金订阅号
3+阅读 · 2017年9月18日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员