Neural networks have shown great promises in planning, control, and general decision making for learning-enabled cyber-physical systems (LE-CPSs), especially in improving performance under complex scenarios. However, it is very challenging to formally analyze the behavior of neural network based planners for ensuring system safety, which significantly impedes their applications in safety-critical domains such as autonomous driving. In this work, we propose a hierarchical neural network based planner that analyzes the underlying physical scenarios of the system and learns a system-level behavior planning scheme with multiple scenario-specific motion-planning strategies. We then develop an efficient verification method that incorporates overapproximation of the system state reachable set and novel partition and union techniques for formally ensuring system safety under our physics-aware planner. With theoretical analysis, we show that considering the different physical scenarios and building a hierarchical planner based on such analysis may improve system safety and verifiability. We also empirically demonstrate the effectiveness of our approach and its advantage over other baselines in practical case studies of unprotected left turn and highway merging, two common challenging safety-critical tasks in autonomous driving.
翻译:在规划、控制和一般决策方面,神经网络在规划、控制和学习辅助网络物理系统(LE-CPS)方面显示出巨大的希望,特别是在复杂情景下改善绩效方面。然而,正式分析神经网络规划者为确保系统安全而确保系统安全的行为非常困难,这大大妨碍了其在诸如自主驾驶等安全关键领域的应用。在这项工作中,我们提议一个基于等级的神经网络规划员,分析系统的基本物理情景,并学习一个系统一级的行为规划计划,并采用多种特定情景的运动规划战略。然后,我们制定一种有效的核查方法,纳入系统过于接近状态可达定的系统,以及新颖的分隔和结合技术,以正式确保系统安全。根据理论分析,我们表明,考虑不同的物理情景和根据这种分析建立等级规划员,可以改善系统安全和可核查性。我们还从经验上证明我们的方法的有效性及其在对无保护左转和高速公路合并的实际案例研究中比其他基线的优势,这是在自主驾驶过程中两个共同具有挑战性的安全批评性的任务。