High-resolution (HR) image harmonization is of great significance in real-world applications such as image synthesis and image editing. However, due to the high memory costs, existing dense pixel-to-pixel harmonization methods are mainly focusing on processing low-resolution (LR) images. Some recent works resort to combining with color-to-color transformations but are either limited to certain resolutions or heavily depend on hand-crafted image filters. In this work, we explore leveraging the implicit neural representation (INR) and propose a novel image Harmonization method based on Implicit neural Networks (HINet), which to the best of our knowledge, is the first dense pixel-to-pixel method applicable to HR images without any hand-crafted filter design. Inspired by the Retinex theory, we decouple the MLPs into two parts to respectively capture the content and environment of composite images. A Low-Resolution Image Prior (LRIP) network is designed to alleviate the Boundary Inconsistency problem, and we also propose new designs for the training and inference process. Extensive experiments have demonstrated the effectiveness of our method compared with state-of-the-art methods. Furthermore, some interesting and practical applications of the proposed method are explored. Our code will be available at https://github.com/WindVChen/INR-Harmonization.


翻译:高分辨率(HR)图像协调在图像合成和图像编辑等真实世界应用中非常重要。然而,由于记忆成本高,现有密集像素到像素的协调统一方法主要侧重于处理低分辨率(LR)图像。最近的一些工作采用彩色到彩色转换,但仅限于某些分辨率,或严重依赖手工制作的图像过滤器。在这项工作中,我们探索如何利用隐含的神经代表(INR),并提议一种基于隐含神经网络(HINet)的新颖图像协调方法,据我们所知,这是适用于HR图像的第一种密集像素到像素的方法,没有手工制作的过滤设计。在Retinex理论的启发下,我们将MLP分解成两个部分,分别捕捉复合图像的内容和环境。一个低分辨率图像前网络旨在缓解边界不协调问题,我们还提议对培训和推断过程进行新的设计。一些广泛的实验展示了我们的方法的有效性,将MLLPS/网络的实用方法与我们所使用的方法进行比较。</s>

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
W-net: Bridged U-net for 2D Medical Image Segmentation
Arxiv
19+阅读 · 2018年7月12日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员